

# 6th Meeting of the IHO Council

### S-100 Testbed Project in 2022

# Agenda Item C6-04.1C

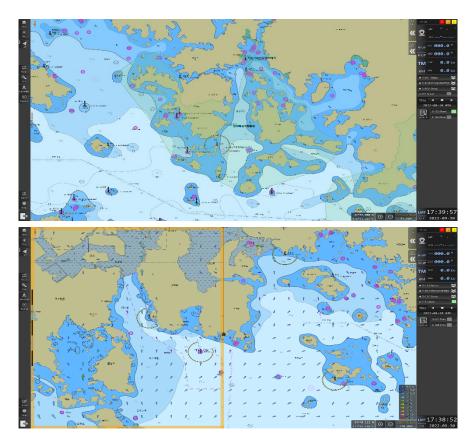
C-6, IHO Secretariat, Monaco, 18 - 20 October 2022



### IHO INTRODUCTION

International Hydrographic Organization

## Decision C5/60


- The Council noted the approach proposed by the KHOA-NOAA S-100 Testbed project to measure the efficiency quantitatively for the use of S-100 data service and invited Member States to join the project and suggest other quantitative measures (safety of navigation, efficiency) as appropriate
- Scope of S-100 testbed project in 2022
  - Technical issues of S-100
    - S-98 Interoperability
    - DF-mode in S-100 testbed system
    - Up-to-dateness of S-100 data using the S-128 dataset
  - Usability of S-100 service
  - Economic efficiency test of S-100 service



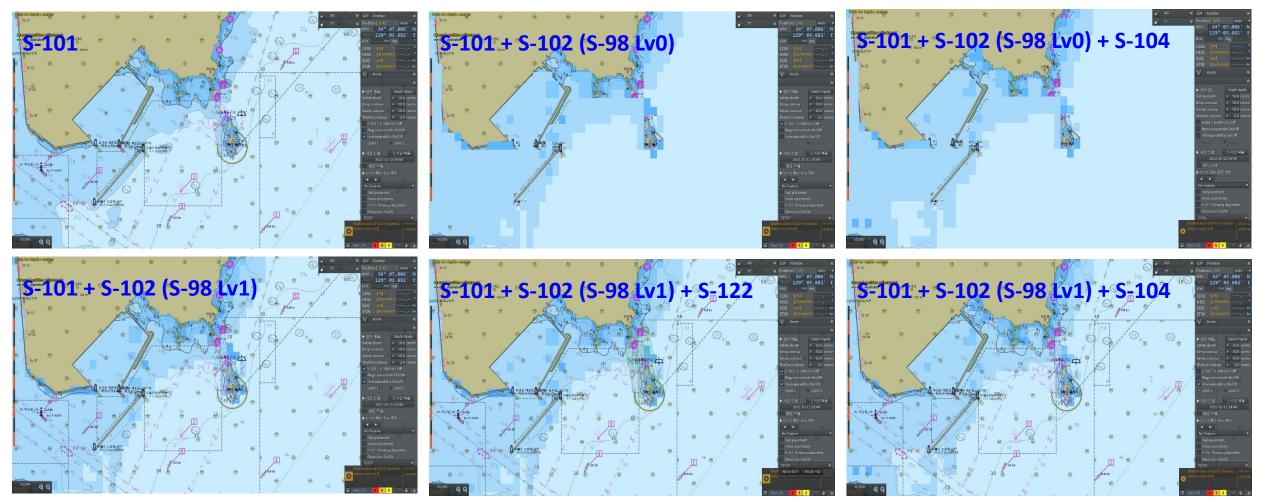
### **TECHNICAL ISSUES OF S-100**

International Hydrographic Organization

- Technical issues with S-100 testbed system
  - S-98 Interoperability



#### Test summary and recommendations

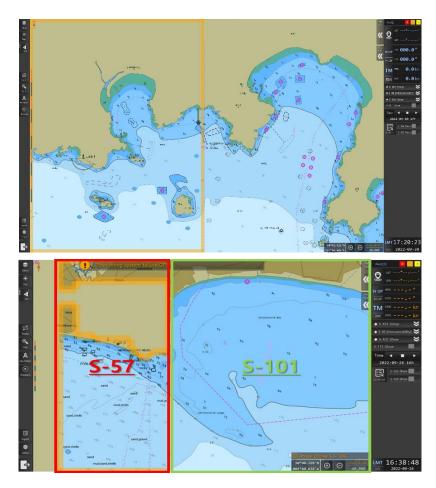

- ✓ ROK-US joint project is improving the S-98 IC (Interoperability Catalogue) and it will be useful for OEMs and related stakeholders.
- ✓ S-98 IC applied for harmonized display between S-10X data and scenario-based TDS for levels 1 and 2 are required.
- $\checkmark$  Current version of the draft IC needs to be refined.
- ✓ Recommend taking S-98 IC as a part of S-164 TDS for type approval.



## **IHO TECHNICAL ISSUES OF S-100**

International Hydrographic Organization

- Technical issues with S-100 testbed system
  - S-98 Interoperability






### **TECHNICAL ISSUES OF S-100**

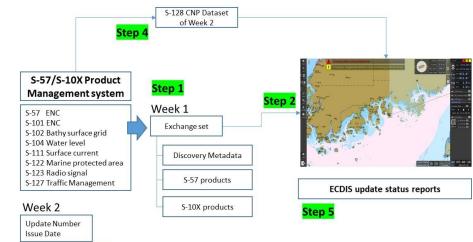
International Hydrographic Organization

- Technical issues with S-100 testbed system
  - DF-mode in S-100 testbed system



UKHO contributed their S-100 based data sets for DF test Simultaneous display of S-57 and S-101 ENC

#### Test summary and recommendations


- ✓ Contrary to the initial concern, there was no technical difficulty in developing the DF function on the S-100 navigation system
- ✓ If the color table, seamless portrayal of symbols, connection of shoreline, display of specific feature types in curve and polygon is adjusted and solved, DF-mode will work well
- ✓ Recommend to provide the technical guideline for indicating the boundaries between S-57 ENC and S-101 ENC when they are simultaneously on the screen



### **TECHNICAL ISSUES OF S-100**

International Hydrographic Organization

- Technical issues with S-100 testbed system
  - Up-to-dateness of S-100 data using the S-128 CNP dataset



#### Arbitrary change

Step 3

| Report Name : Electronic Navigational Charts(ENC) Update Status Report                        |     |                 |        | Chart                                     | Status     | Count             |
|-----------------------------------------------------------------------------------------------|-----|-----------------|--------|-------------------------------------------|------------|-------------------|
|                                                                                               |     |                 |        | Intel                                     |            | 462               |
| Idemfuller:<br>Update Reference Date : (from 5-128)<br>Date of Report: 2022-09-13<br>Content: |     |                 |        | Up to Date<br>Not Up to Date<br>Withdrawn |            | 446/462<br>16/462 |
|                                                                                               |     |                 |        |                                           |            |                   |
|                                                                                               |     |                 |        |                                           |            | 8/462             |
|                                                                                               |     |                 |        |                                           |            |                   |
|                                                                                               |     |                 |        |                                           |            |                   |
| Products                                                                                      | Num | Dataset Name    | Editio | n Update                                  | Issue Date | Status            |
| ALL                                                                                           |     | [S-57] KR1F0000 |        |                                           | 20220107   | Up to Date        |
|                                                                                               |     | [S-57] KR2F4000 |        |                                           |            | Up to Date        |
| S-101                                                                                         |     | (S-57) KR3F4D00 |        |                                           |            | Up to Date        |
| S-102                                                                                         |     | [S-57] KR3F4H00 |        |                                           | 20220107   | Up to Date        |
| S-104                                                                                         |     | [S-57] KR4F4H10 |        |                                           | 20220107   | Up to Date        |
| S-111                                                                                         |     | [S-57] KR4F4H20 |        |                                           | 20220107   | Up to Date        |
| S-122                                                                                         |     | [S-57] KR4F4H30 |        |                                           | 20220107   | Up to Date        |
| S-123                                                                                         |     | [S-57] KR4F4H40 |        |                                           | 20220107   | Up to Date        |
| S-124                                                                                         |     | [S-57] KR5F4H21 |        |                                           | 20220107   | Up to Date        |
| S-127                                                                                         |     | [S-57] KR5F4H22 |        |                                           | 20220107   | Up to Date        |
|                                                                                               |     | [S-57] KR5F4H23 |        |                                           | 20220107   | Up to Date        |
|                                                                                               |     | [S-57] KR5F4H24 |        |                                           | 20220107   | Up to Date        |

#### Verifying the up-to-dateness using S-128 S-100 data update status report

#### Test summary and recommendations

- ✓There was no issue for the S-128 data model while verifying the up-to-dateness
- ✓ Detailed scenarios for short interval products S-104 and S-111 should be defined
- ✓ S-98 Annex C guideline of S-100 data update status report for S-100 navigation system needs to be improved for its details
  ✓ The test bed proposes the way to produce S-128 TDS by
  - considering different S-100 products and occasions (new, reissue, update and cancel), and to apply it as the S-164 TDS.



#### USABILITY TEST OF S-100 SERVICE IHO

International Hydrographic Organization

- Purpose and testing procedure
  - Traditional products(S-57 ENC and NPUB) vs S-100 data service
  - Quantitatively measure usability levels for two types products

#### **Test condition**

- Conducted for 10 mariners with more than 3 years of navigation experience
- Testing procedure: Assignment of voyage planning ٠ missions with different levels of difficulty between "Busan $\leftrightarrow$ Jeju" and "Incheon $\leftrightarrow$ Pyeongtaek" routes. (4 courses in total)



1) Education of testing purpose and scenarios



4) Task using traditional products



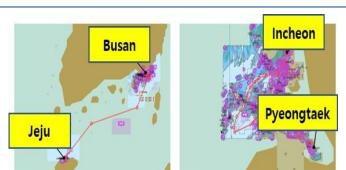
Familiarization with navigation system

5) Task using S-100 data service



Wear eve tracker equipment and focus adjustment




Conduct guestionnaire evaluation and interview after route planning



- Task 1. Update of nautical products
- Task 2. Navigational warning
- Task 3. Route planning

Test scenario

- Task 4. Check the surface current
- Task 5. Confirmation of route and save



7/15

### **Test equipment**





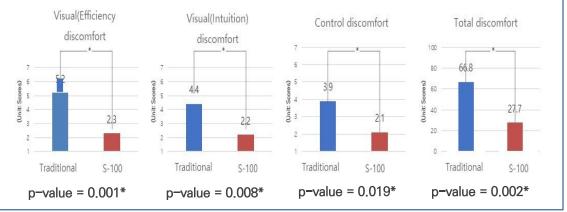

### IHO USABILITY TEST OF S-100 SERVICE

- International Hydrographic Organization
- Usability evaluation
  - Qualitative indicators (for questionnaire survey)
  - Quantitative indicators (for measuring eye movements)

### **Evaluation indicators**

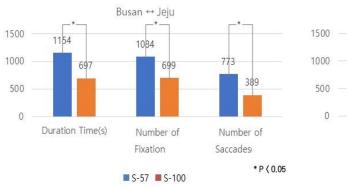
- Qualitative evaluation indicators: Questionnaire for subjective discomfort (visual, control, total), 7 point scale for visual and control discomfort (from 1 for very comfortable to 7 for very uncomfortable) 100 score scale for total discomfort
- Quantitative evaluation indicators: Utilization of eye tracking data to track eye movements during conducting each task by participants.

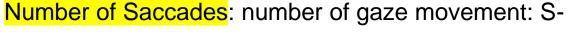


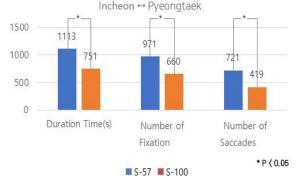



### IHO USABILITY TEST OF S-100 SERVICE

- International Hydrographic Organization
- Evaluation results


#### **Qualitative evaluation results**


- Visual (efficiency) discomfort: 5.2 for traditional products and 2.3 for S-100 based product service
- Visual (intuition) discomfort: 4.4 for traditional products and 2.2 for S-100 based product service
- Control discomfort: 3.9 for traditional products and 2.1 for S-100 based product service
- Total discomfort: 66.8 for traditional producted and




#### Quantitative evaluation results

- Measuring value using eye tracker: Duration time, number of fixation, number of saccades
- When comparing data by item according to equipment, a significant difference was confirmed at the statistical reliability level of 0.05
- **Duration time**: task execution time, S-57 > S-100
- Number of Fixation: number of gaze fixations, S-57 > S-100

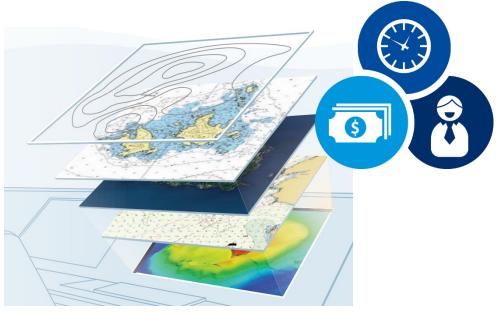








### IHO USABILITY TEST OF S-100 SERVICE

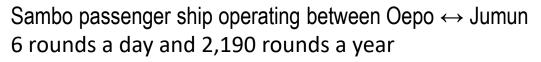

International Hydrographic Organization

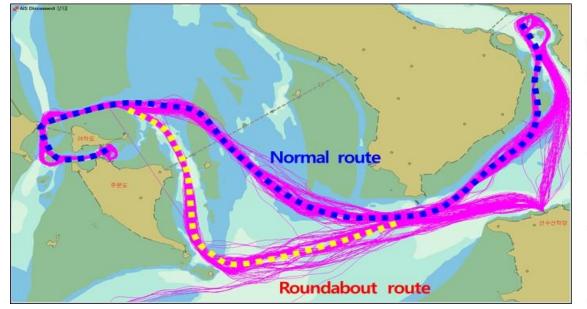
### Summary of evaluation result

- Discomfort level test, operating S-100 based products are comfortable
- Duration time, number of fixation and number of saccades test shows that S-100 based product service is more efficient compared to the S-57 ENC with nautical publications
- S-100 test bed system provides a higher usability compared to the traditional products in updating nautical products, navigational warning, and checking surface current in arrival port.



S-57 + Nautical publications





S-100 ECDIS

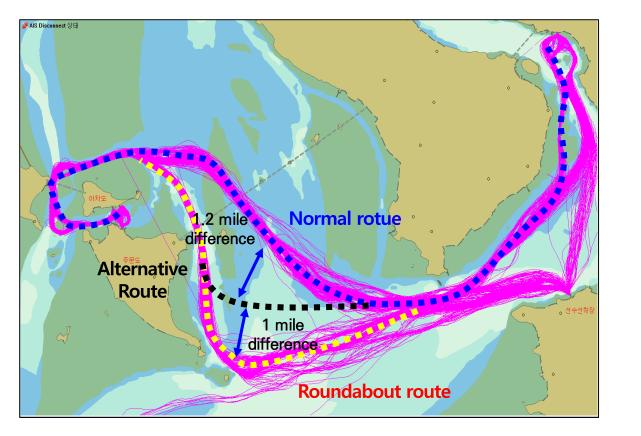


### IHO ECONOMIC EFFICIENCY OF S-100 DATA SERVICE

- International Hydrographic Organization
- Purpose and Procedure
  - (Major indicators) navigation distance, time required according to speed, fuel consumption, and operation time
  - The area with strong tides 2 official routes(Normal and Roundabout)
  - Three routes (Normal, Roundabout, <u>Alternative with S-100</u>)
  - Identify an alternative route with a shorter distance using S-100 data






| Num | Jumun Departure | Oepo Departure |
|-----|-----------------|----------------|
| 1   | 07:00           | 08:50          |
| 2   | 11:00           | 12:50          |
| 3   | 14:30           | 16:20          |



### IHO ECONOMIC EFFICIENCY OF S-100 DATA SERVICE

International Hydrographic Organization

- Alternative route
  - Safer and optimal alternative routes were identified for roundabout routes operated at low tide, Time and distance were calculated



#### Economic analysis process

- The roundabout route was 4,157m, the alternative route using the S-100 data service was calculated to be 2,306m,
- The number of possible roundabout and alternative routes out of the total number in coastal navigation schedule was 1,196.
- Assuming that the fuel consumption per hour is 1,000 liters and the fuel cost per liter is calculated as \$1.25, the formula for economical analysis of operation efficiency can be applied as follows

(Route distance) X (Numbers of Roundabout/Alternative route navigation) / (Vessel speed – 12kn) X (Fuel consumption per hour) X (Fuel cost per liter)



### **IHO** ECONOMIC EFFICIENCY OF S-100 DATA SERVICE

International Hydrographic Organization

## • Economics analysis of coastal passenger ships

| Passenger ship<br>Route                                                  | Roundabout route                                                                                                                                          | Alternative route explored using S-100 data service |  |  |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| Estimated distance (m)                                                   | 4,157                                                                                                                                                     | 2,306                                               |  |  |
| Distance difference between<br>normal and roundabout/<br>alternative(NM) | 2.2                                                                                                                                                       | 1.2                                                 |  |  |
| Total number of navigation                                               | 2,190 rounds                                                                                                                                              |                                                     |  |  |
| Expected number of<br>roundabout/alternative route                       | 1,196 rounds                                                                                                                                              |                                                     |  |  |
| Fuel consumption per hour                                                | 1,000 liters                                                                                                                                              |                                                     |  |  |
| Fuel cost per liter                                                      | \$1.25 per liter (include 0.01% MGO tax)                                                                                                                  |                                                     |  |  |
|                                                                          | (Route distance) X (Numbers of Roundabout/Alternative route navigation) / (Vessel speed – 12kn) X (Fuel consumption per hour) X (Fuel cost per liter)     |                                                     |  |  |
| Economics analysis of coastal                                            | (A) <b>\$273,209</b>                                                                                                                                      | (B) <b>\$149,023</b>                                |  |  |
| passenger ships                                                          | (A) - (B) = <b>\$124,186 (45.5% savings)</b><br>Total annual cost savings of \$124,186 (45.5% savings) would occur when the alternative<br>route was used |                                                     |  |  |



International Hydrographic Organization

- S-100 testbed system to check the technical aspects of the S-100 (S-98, DF concept, S-128 up-to-datenss)
  - The essential functions to go to Full S-100 ECDIS was developed
- Usability and economic efficiency of S-100 service
  - Conclude using S-100 based product service can bring higher usability and economic efficiency compared to the traditional products in terms of updating nautical products and integrating required information
  - Plan to see economical efficiency with S-111 surface current
- Safe Navigation of S-100 service
  - Digitalization and automation with S-100 based product services can reduce human errors.
  - Plan to find the direct relations between digitalization and reducing human errors



- Note the results of the S-100 test bed project conducted by KHOA in 2022.
- Invite Member States to participate in the S-100 Testbed

See Annex A / Annex B / Annex C for detailed research report Technical issues and testbed activities will be discussed in the upcoming S-100WG meeting