discover. collaborate. innovate.

A two-part seabed geomorphology mapping scheme for multidisciplinary applications

An Ocean Best Practice approach

Rachel Nanson¹ and Joana Gafeira J.³

McNeil M.¹, Huang Z., ¹ Wenderlich M., Orr M.¹, Arosio R.², Dove D.³, Bjarnadóttir L.R.⁴, Dolan M.F.J.⁴, Guinan J.⁵, Post A.¹, Webb J.⁶, Nichol S.¹ and Carroll A.¹

- 1. Geoscience Australia;
- 2. University College Cork;
- 3. British Geological Survey;
- 4. Geological Survey of Norway;
- 5. Geological Survey of Ireland;
- 6. Latrobe University.

Australian Government Genedere Australia Concernent australia Co	
A two-part Seabed Geomorphology classification scheme: (v.2) PART 1: MORPHOLOGY FEATURES GLOSSARY	
October, 2020	
Dove, D., Nanson, R., Bjarnadóttir, L.R., Guinan, J., Gafeira, J., Post, A., Dolan, M.F.J., Stewart, H., Arosin, R., Scott, G. gen Heder Perparto en the IMM GA GROMORPHOLOgy WORKING GROUP tore Habart/Thrond Argane	Autralian Generament Genedicate Australian Weight State Construction C
	A two-part seabed geomorphology classification scheme PART 2: GEOMORPHOLOGY CLASSIFICATION FRAMEWORK AND GLOSSARY - Version 1.0
	Nanson, R. ¹ , Arosio, R. ² , Galeira, J. ¹ , McNeil, M. ¹ , Dove, D. ³ , Bjarnadóttir, L.B. ⁴ , Dolan, M.F.J. ⁴ , Guinan, J. ³ , Post, A. ³ , Webb, J. ⁵ , and S. Nichol ¹ L.Geologia Sovey of Roway S. Geologia Sovey of Insteads 6: Lando University. Oren REPORT FROM THE MMG da ⁴ MAINER CEOMORPHOLOCY WORKING GIOUP * MARKAD ANTOMIC MAIN ACCOUNT ANTIMAL DOI: 10.538/Joneds.780839

1 in

two-part scheme	Applications	GIS tools	Next steps
-----------------	--------------	-----------	------------

Marine geomorphology maps - diverse users, diverse scales

A two-part scheme	Applications	GIS tools	Next steps		

Marine geomorphology mapping: a two-part approach

Download via: https://www.oceanbestpractices.org/repository/

Steps to developing an ocean best practice

Confirm the need

- Consider best practices training
- Review similar methods
- Survey the community
- Develop scoping report

Form a working group

- Identify leaders
- Invite contributors and institutions
- Be inclusive
- Set scope of method

Przeslawski et al (2023)

3

5

Develop content

- Assess/integrate related methods
- Consult in working group
- Create strawman 4 -
- Complete final draft

DEVELOPAND

RELEASE

Review final draft

- Invite full community review
- Respond and revise
- Maintain adjudication record 7

Release

- Publish at repository
- Notify stakeholders
- Promote to target audiences

6

Invite feedback

- Survey users
- Publish in journal
- Assess uptake via repository
- Consider new version

Obtain community endorsement for an accepted best practice!

- Obtain GOOS endorsement.
- Obtain institutional endorsement.
- Include in permitting recommendations
- Maintain and update

Benefits of using a best practice

- Collaborative opportunities
- Efficient use of time
- Improved systems interoperability
- Data comparability and collatability
- Greater trust in data
- Streamlined regulatory approval
- Higher funding success

Workshop participants (16 countries)

British

Geological

BGS

Part 2

Australian Government

oscience Australia

Part 1

A two-part Seabed Geomorphology classification scheme: (v.2)

PART 1: MORPHOLOGY FEATURES GLOSSARY

October 2020

Part 1 GIS paper and Tools

* frontiers

Seabed morphology maps and data are critical for knowledge-building and bes practice management of marine environments. To facilitate objective and repeatable production of these maps, we have developed a number of serviautomated, rule-based GS tools (Geoscience Australia's Semi-automated Morphological Mapping Tools - GA-SaMMT) to operationalise the mapping of a hon scripts under the widely-adopted proprietary ArcQIS Pro platform. The utility of these tools was tested across nine case study areas that represent a diverse range of complex bathymetric and physiographic settings. Overall, the for capture of greater detail across a range of spatial scales. The mapping results istrate a number of advantages of GA-SaMMT, including: 1) requirement of only a bathymetry grid as sole data input; 2) flexibility to apply domain knowledge user-defined tool parameters, or to instead use the default parameter settings 3) repeatability and consistency in the mapping outputs when using a consisten 5) efficiency in mapping a large number lihousandiil of seabed morpholog

Geological Survey

A two-part scheme

Applications

Part 1: Morphology

A two-pa	rt scheme	Applications	GIS t	tools		Next steps		
Part 1: Morpholo	Pgy Planar surfaces, inclined	surfaces and lineaments		Part 2: Geomor	phology	Fluvial		
						Coastal		
Step 1: map shapes & define Morphology	Highs	RNOLL HILL MOUND BANK PLATEAU		Step 2:		Glacial Solid Earth		
				Tag shapes with their Geomorpholo	By Settings	Current-induced Biogenic		
		VALLEY TRENCH CHANNEL TROUGH GULLY SADDLE GAP FLOOR				Mass Movement Fluid Flow		
	DEPRESSION(S)		γ			Karst Anthropogenic		

GIS tools

Applications

Novt stons

Λ	t1//0-	nort	ccho	mo
-			SUILE	me
		P m · v		

Applications

GIS tools

						Setting /	BGU *	BGU-T*	Part 2 Geomorphology definition **	Apps ***					Barris Idaa	a second second	2011
	Basic geomorphic unit (BGU)		BGU Type	(BGU-T)	► BGU I	Process			A low gradient sand bar and trough that forms	1 - VI	18 Index of term	s			Beach ridge	Coastal	BGU
Fluvial and/or Coastal									alongshore in the intertidal zone of a BEACH. On		The following list of ten	ns is prov	rided to	assist	Bed (biogenic)	or "Mat"	
BGU		Zaitlin et al	incised	valley	et al. — be coastal	4		ridge and runnel	macrotidal beaches, multiple ridges (Cf. INTERTIDAL BARS) and runnels may form across the intertidal	v	the user in finding whic	Setting	/ Proces	s	Bedded bedrock	Solid Earth	BGU-T
	- subaerial valley				(2020)				zone spanning tens to hundreds of metres (Masselink		chapter each term is cla	ssified. B	GU-T m	arked	outcrop	0-114 5-44	0.011
		Þ	river valley	; ria; fjord					and Hughes, 2014).		with an asterix are not	lefined in	the glo	ssary.	Bedding ridge	Solid Earth	BGU
	- floodplain terrace	bedrock-	stra	rth					A low gradient sandy to gravely deposit located on the landward side of a BARRIER deposited over a		A				Bedrock outcrop	Solid Earth	BGU
	- channel ledge							washover bar	BACK-BARRIER FLAT or LAGOON facies, formed by	III, IV, V	+				Bench	Current-induced	BGU-T
	flag de bala	alluvial (Nanson -	high-energy	cohesive;					storm surge or tsunami run-up. Typically fan shaped		Abyssal hill	Solid Earth	1	BGU	Bench	see "Din slope"	500-1
	- floodplain	& Croke, 1992)	low-energy	y unconfined; r cohesive					A low gradient sand bar that forms in the intertidal		Accumulation zone	see "-Depo	osition		Berm	Coastal	BGU-T
Coastal								intertidal bar	zone of BEACHES. On macrotidal coasts, multiple bars	II, III, IV	Agglutinating	one Biogenic		BGU-T	Bioherm	Biogenic	BGU
Setting	- delta	•	upper; lower; bayhead: she	front; pro-; f-edae: tidal				(aka. ridgebar)	typically form into a RIDGE AND RUNNEL system (Masselink and Hughes, 2014)		Alluvial fan	Fluvial		BGU	Biostrome	Biogenic	BGU
	delta lobe		delta (flood or	ebb or both)			i i		Discontinuous COASTAL BARS that typically form in		Alluvial fan lobe	Fluvial		BGU	Black smokers	Fluid Flow	BGU-T
		_			Schumm straig	ji -		tidal bar	tide-dominated SUBAERIAL CHANNELS, which are	II, III, IV	Anchor drag	Anthropog	genic	BGU-T	Blind canyon	see "Slope-	
	 channel belt 		river; creek;	aistributary	(1981) braid	e.			aligned to the dominant flow direction (Dalrymple et		Angular drainage Fluvial BGL		BGU-T		confined canyon"		
			avi	ly				Amalgamated, she	pre-parallel sand bodies incorporating BEACH, coastal		network*				Blind valley	Karst	BGU-T
	*						barrier compl	2X demonstration for			Annulate/annular	Biogenic		BGU-T	Blowout crater	Fluid Flow	BGU
	- subaerial channel	►		Poter	ntial applications		Exa	mples						BGU-T	Boring*	Biogenic	BGU-T
							_						genic	BGU	Bottom trawl	Anthropogenic	BGU-T
												00	genic	BGU-T	Bundle structure	Glacial	BGU-T
	- barrier complex (aka	-	-	(1)	to infor notontic	d habit	Oce	ean managem	ent, seafood industry, biodive	ersity, co	nservation (e.g.	a	ct		Burrow*	Biogenic	BGU-T
	barrier system)		cnenie	(1)	to mer potentia	ii nabii	Har	ris and Baker	. 2011).					BGU-T	-		
	*	Ollerhand a	valiant /						,====,:			tt	5	BGU	С		
	 barrier 	(1593) ends*	Samens /				_					- 1			Cable	Anthropogenic	BGU-T
	+	1		(11)	coofficer stability		To	assess landsli	de and tsunami risk (e.g. Bard	et et al.,	2003); develop GIS				Caldera (mud	Fluid Flow	BGU
	- beach ridge - chenier ridge	end*		(11)	seanoor stability	/	gro	und models f	or offshore renewables (e.g. F	Barwise e	t al., 2014): for safe				volcano)		
	- chemer nuge				assessment		8.0	lastica infra	et en		, 202 .,,			BGU	Canyon head	Marine	BGU
	- beachface (aka. foreshore)	ends*					nav	igation, intra	structure for hydrocarbons.			_		BGU	Canyon mouth	Marine	BGU
	 shoretace back-barrier 		* borrier e									t/	5	BGU-T	Carbonate doline	Karst	BGU-T
							To	infer near sea	floor energy, sediment transr	ort nath	ways, volumes /			BGU-T	Carbonate karst	Karst	BGU
	 tidal flat 	Þ	supratid	(111)	sediment model	lling		laste la a Che	and all 2000)	, or c p a c i i	10,0,00000000	in	duced	BGU-T	Catchment	see "Drainage basia"	
	lanes		alacad			-	buc	igets (e.g. Sto	ow et al., 2009).			in	duced	BGU	Cave	Coastal	BGU-T
	lagoon	P	closed,									_ F		BGU	Centrifugal drainage	Fluvial	BGU-T
	- beach	Short	refle	(IV)	climate and past	•								BGU	network*		
	- raised beach	(2000)		(,	cinitace and pas	•	For	studies of m	odern climate change, palaeo	environm	nental	-		BGU-T	Centripetal drainage	Fluvial	BGU-T
			reef or		environment		rec	onstruction a	archaeology (e.g. Brooke et al	2017.0	(Learvet al 2020)			BGU-T	Channel belt	Coastal	BGU
					reconstruction			onsciaction, c	inclucion of the state of the	, 2017, 0	, Leany et al., 2020).			BGU-T	Channel ledge	Coastal or Fluvial	BGU
			outcrop toe: sho				_					rie	er		Chenier plain	Coastal	BGU-T
	 rocky coast 	•	or horiz	0.0			-					<u> </u>			Chenier ridge	Coastal	BGU
			arch; pathal	(V)	coastal and mar	ine	10	investigate er	ivironmental, erosion, seatoo	d industr	y, recreational	_		BGU	Chute channel	Current-induced	BGU
			New		management		fish	ing, administ	rative borders.					BGU-T	Circular volcanic	Solid Earth	BGU-T
	 Coastal barform 		shore											BGU-T	depression		
			intertid									-		BGU	Cliff	Coastal	BGU-T
	Cf. Commission and Descent		and rus	0/0	minoral recours	00	To	ocato fluvial	and coastal placer deposits (K	udrace 2	017) and			BGU-T	Cliff	see "Scarp slope"	
	cj. current-induced Process		inter	(VI)	mineral resource	62	10	ocate nuvial	and coastal placer deposits (K	uurass, Z							
	Classif	ication tr			assessment		agg	regates.					Ir	dav	of torms		
	Classill	เงิลแบท แ	66														

https://atlas.marine.ie

BGS Seabed Geology – map series

- 70

- 50

A two-part scheme	Applications	GIS tools	Next steps
1. Beagle Marine Park			

Part 2: Geomorphology

.

A two-part scheme

Applications

GIS tools

Earth sciences for Australia's future | ga.gov.au

3. Groote Eylandt (NT)

Groote Eylandt Archipelago

Dynamic (DEA) Coastlines

5 km

Operationalising the two-part scheme – ESRI

Part 1 Morphology mapping tools - published

Catalog	~ † ×	Catalog
Project Portal Favorites	≡	Project Portal
🛞 🛅 Search Project	~ م	🛞 🟦 Search P
🖻 📷 Maps		🖻 🗑 Maps
🔺 🚘 Toolbôxes		🔺 🗃 Toolbôxe
 BathymetricHigh.pyt Openness Tool Bathymetric High TPI LMI Tool Bathymetric High TPI Tool Bathymetric High BathymetricLow.pyt Openness Tool Bathymetric Low TPI CI Tool Bathymetric Low 	Step 1	Ca Ge
TPI Tool Bathymetric Low AddAttributes.pyt Add Profile Attributes High Tool Add Profile Attributes Low Tool Add Shape Attributes High Tool Add Shape Attributes Low Tool Add Shape Attributes Low Tool Add Topographic Attributes High T Add Topographic Attributes High T ClassificationFeature.pyt Classify Bathymetric High Features	Step 2	in Maar Constants Co

Part 2 Geomorphology tool (DRAFT)

Catalog	~	џ	\times
Project Portal Favorites			≡
🕞 🖻 Search Project	,	ρ	\sim
🖻 📷 Maps			
▲ 🗃 Toolbôxes Step 5			
AddGeomorphologyAttributes.pyt			
Add Geomorphology Attributes T	ool		

Cartographic style (DRAFT)

A two-part scheme	Applications	GIS tools	Next steps
Future work			

1. Application:

- To the new (2023) national 250 m grid >>
- To regional grids (e.g. Bass Strait 30 m 2023)
- Advice to IHO/SCUFFN on how to translate B6

2. Tools

- Finalise Part 2 tools
- Migrate all tools to Github to support their refinement

https://www.ausseabed.gov.au/resources/news

3. Products:

• SOP, ESRI cartographic style, web services, Part 2 manuscript, Story Map, tutorial module

Please direct feedback to: Rachel.Nanson@ga.gov.au

IHO-based classifications

IHO B-6 (2019)

I. GENERIC TERMS

NOTE: Only the generic terms in this section should be used in any new undersea feature name proposal that is intended for submission to SCUFN.

ABYSSAL PLAIN

An extensive, flat or gently sloping region, usually found at depths greater than 4000 m.

APRON

A gently dipping SLOPE, with a smooth surface, commonly found around groups of islands and SEAMOUNTS.

BANK

An elevation of the seafloor, at depths generally less than 200 m, but sufficient for safe surface navigation, commonly found on the continental shelf or near an island.

BASIN

A depression more or less equidimensional in plan and of variable extent.

Two-part scheme (2020, 2022)

Cookbook (2022)

IHO-based classifications

Term	B 6	Two-part scheme def		Morph (Part 1) or Geomorphology (Part 2)?	Cookbook						
APRON	A gently dipping SLOPE, with a smooth surface, commonly found around groups of islands and SEAMOUNTS.	A gently dipping SLOPE surface, occuring at the base of a bathymetric high, that is elevated relative to the adjacent seafloor.		Morphology	Definition: A gently dipping SLOPE, with a smooth surface, commonly found around groups of islands and SEAMOUNTS Dimensions: Can vary greatly from less than one km2 to 100s of square kilometres. Length to width ratio: Typically, about 1:1, but can be elongate up to 3:1. Depth: Any water depth. Steepness: Usually less than 1 degree - 175 m change in elevation over 10 kilometres.						
			Term	B6	Two-part sche	erne def	Morph (Part 1) or Geomorphology (Part 2)?	Cookbook	and the share set of a set		
BANK	An elevation of the seafloor, at depths generally less than	An elevation of the s found in depths less but sufficient for safe	ABYSSAL HILL	elevation on the deep seafloor.		the elevation(s) on the deep seafloor parallel to a mid ocean ridge and formed by volcanism and block faulting		Comments: Alternative Term: HILL	for the deep seariou		
	200 m, but sufficient for safe surface navigation, commonly found on the continental shelf or near an island.	navigation, commonl continental shelf or r	ABYSSAL PLAIN	N An extensive, gently sloping region, usuall found at dept greater than m	flat or gregion, usually found at dept found at dept found at dept found at dept found at dept found at dept sediment thic fine-grained e biogenic parti	An extensive, flat or gently sloping region, usually found at depths greater than 4000 m 4 km, covered by up to 1 km sediment thicknesses consisting of fine-grained erosional detritus and biogenic particles		Definition: An extensive, flat or gently at depths greater than 4000 m. Dimensions: Generally greater than 10 Length-to-width ratio: Typically, about to 3:1.	<u>refinition:</u> An extensive, <u>flat</u> or gently sloping region, usually found t depths greater than 4000 m. <u>Hensions: Generally greater than 100 x 100 km.</u> ength-to-width ratio: Typically, about 1:1, but can be elongate up o 3:1.		
						Term	86	Two-part scheme def	Morph (Part 1) or Geomorphology (Part 2)?	Cookbook	
						MEDIAN VALLEY	The axial depression of the MID-OCEANIC RIDGE.	N/A	N/A	Definition: The axial depression of the MID-OCEANIC RIDGE. Comments: Alternative Term: TROUGH.	
						1		La ser e la	1	La Alta da Alexandra da Cara da	