

Bathymetry Compilation Workflow in the Finnish Hydrographic Office

27th Baltic Sea Hydrographic Conference 21 - 22 September 2022

Maarit Mikkelsson slides: topi.filppula@traficom.fi

Table of contents

- 1. Key production systems in a nutshell
- 2. Merta (survey data management)
 - Merta databases, data models, Generic Merta workflow
- 3. Ahti (chart data management and nautical chart production)
 - Data models & mappings
 - Workflow
 - Depth model modification
 - Contours
 - Depth areas
 - Sounding selection
 - M_QUAL generation & Data validation

Талтісом

1. Key production systems in a nutshell

MERTA (Survey data)

Caris BDB + BE, HIPS/SIPS

- PostgreSQL DBMS
 - Common CRS & VRS
 - CRS: EUREF-FIN / ETRS-TM35FIN
 - VRS: N2000 (BSCD2000)
- Databases:
 - SurveyDB
 - OutputDB

талтісом

(Generic object DB)

AHTI (Chart data, products)

- Caris HPD
 - Oracle DBMS
 - CRS: EUREF-FIN
- Chart data source DB
- Customized 'S-57+' data model
 - S-57 enriched with some custom feature classes & attributes

2. Merta

Survey data storage and management system

2. MERTA databases – SurveyDB & GenericObjectDB

SurveyDB:

Each survey dataset is stored separately in SurveyDB

- Data is stored in gridded form:
 - Spatial resolution depends on the reason for survey:
 - Fairway areas 0,5m*0,5m
 - Area surveys 1m*1m
- Bands: Depth (shoal bias, true position), Mean, Deep, Density, Std. Dev.

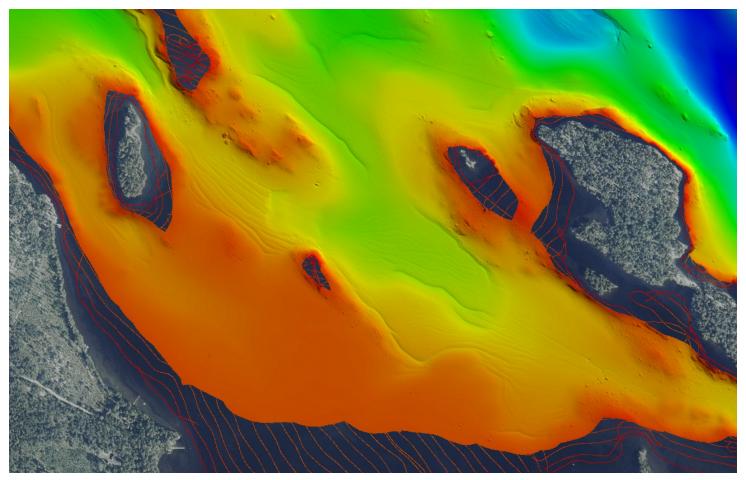
GenericObjectDB:

Vector features: navigational hazards, cables, wrecks etc.

TRAFICOM

2. MERTA databases – OutputDB 1/3

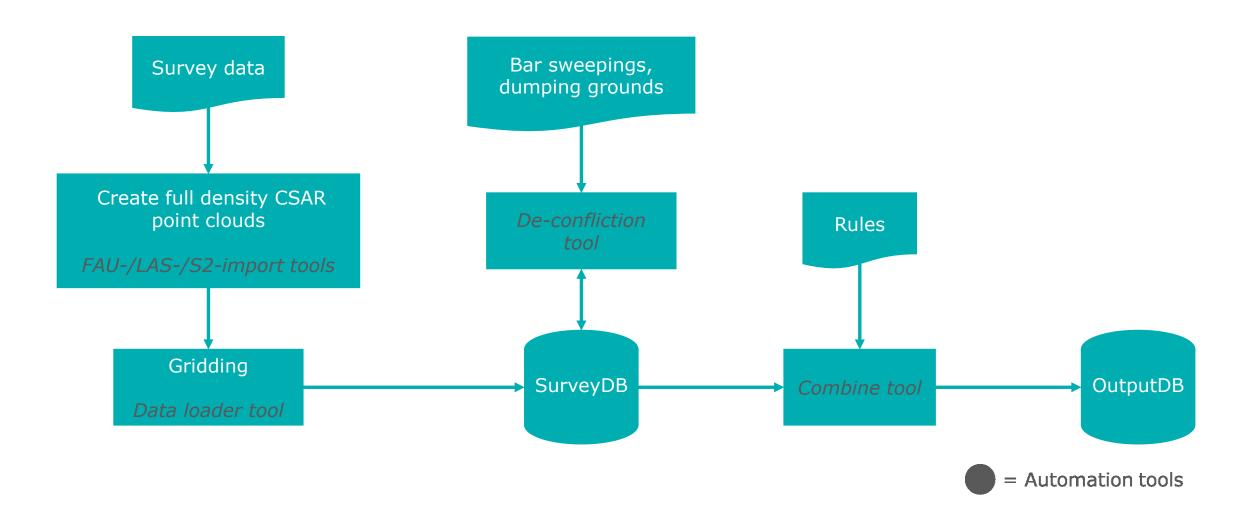
- ▶ 'The main product of MERTA system' \rightarrow Bathymetry compilation
- Combines all SurveyDB datasets to a single contiguous surface
 - MBES, SBES, LiDAR & Echo sweeping data
 - Bar sweepings, dumping grounds also taken into account
 - Valid bar sweepings set minimum depth
 - Dumping grounds generate holes (no data)
- Gridded data
 - Im*1m spatial resolution, surface divided to 10km*10km tiles
 - Multi-band (more on next slide)



2. MERTA databases – OutputDB 2/3

- OutputDB depth models have multiple bands
- Two main bands used for bathymetry compilation
 - 1. Depth
 - Shoal bias, true position
 - 2. Contributor
 - String/Enumeration containing important information for single soundings
 - `14916566|SPS15_Kaiku_02|5|20150821|208|8|10|124|0|20211210 105638.109'
 - ID|Dataset name|Vessel name|Survey start date|Vertical datum|Survey technique| Positioning technique|Mareograph|IHO survey order|Modification time
- Other bands exist
 - Mean, Deep, Density (count), Std. Dev.

Талтісом


2. MERTA databases – OutputDB 3/3

Example of OutputDB data (inland waters) consisting of SBES & MBES surveys Background aerial imagery: National Land Survey of Finland

2. Merta – Generic workflow

TR-X-FICOM

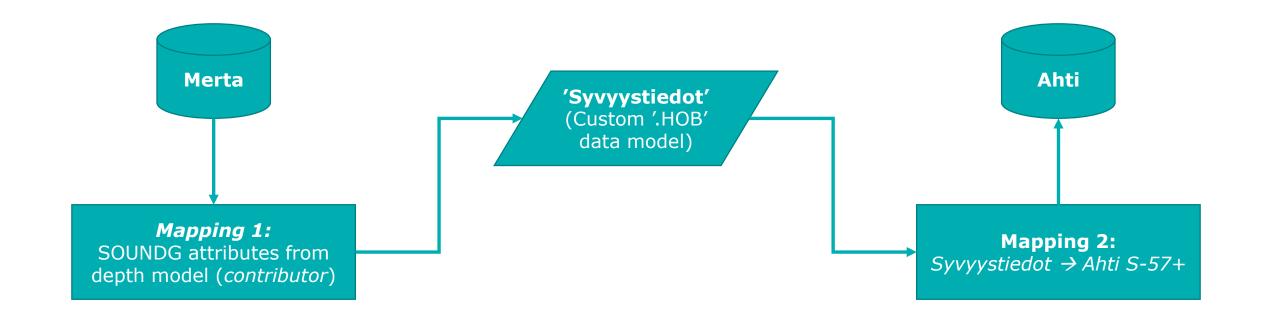
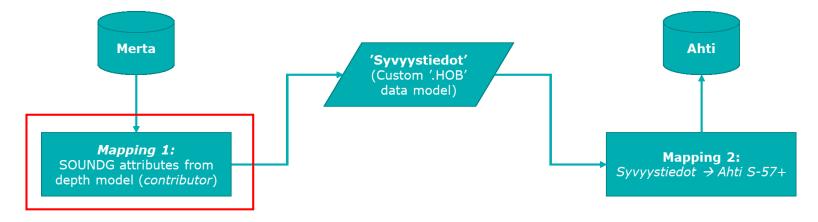

3. Ahti

Chart data management & chart production system

Bathymetry compilation workflow

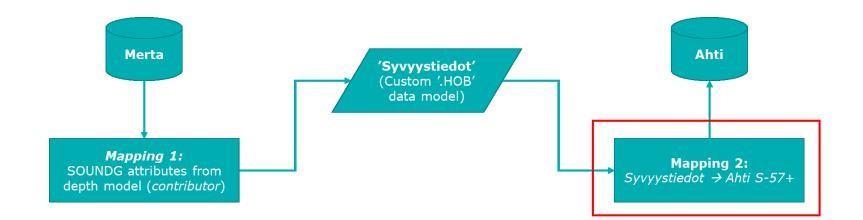
3. Merta – Ahti: data models & mappings 1/3



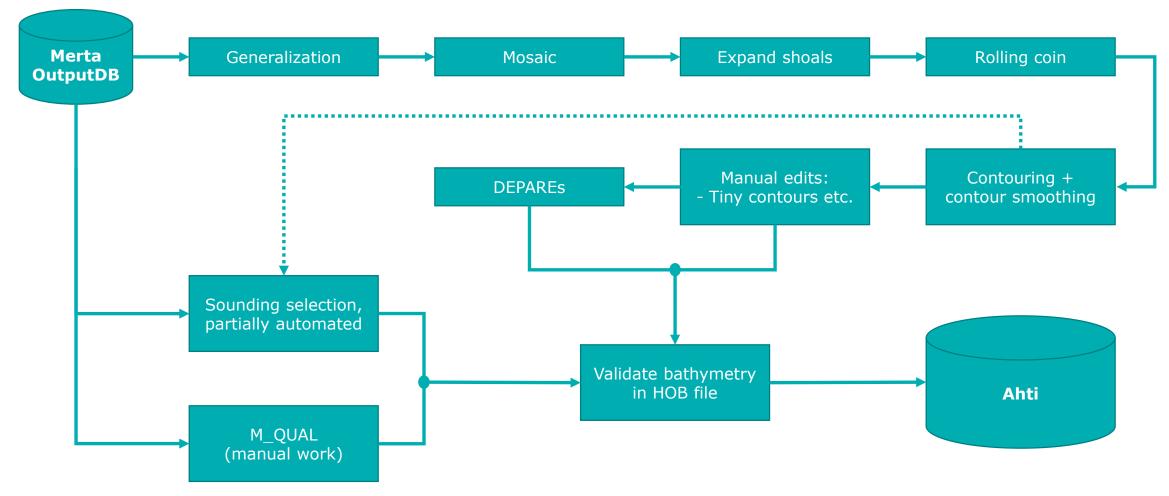
3. Merta – Ahti: data models & mappings 2/3

Mapping 1:

- Map SOUNDG feature attributes based on Merta depth model
- Uses contributor band of the OutputDB depth model
- Maps
 - Survey start date
 - Dataset name (survey name)
 - Vertical datum
 - Survey technique



3. Merta – Ahti: data models & mappings 3/3


Mapping 2:

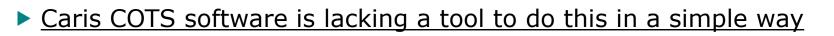
- Maps features and attributes from Syvyystiedot custom .HOB data model to Ahti DB Ahti S-57+ data model
- Sounding rounding (IHO S-4), DEPCNT VALDCO truncation, DEPARE DRVAL truncation
- Populates SORDAT, SORIND
- ► Etc.

3. Merta – Ahti workflow

TR-XFICOM

3. Merta – Ahti workflow, depth model modification 1/5

- Depth models are processed in order to enable automatic generation of depth contours
- Process has four steps
 - Generalization
 - Mosaic
 - Expand shoals
 - Rolling Coin



3. Merta – Ahti workflow, depth model modification 2/5

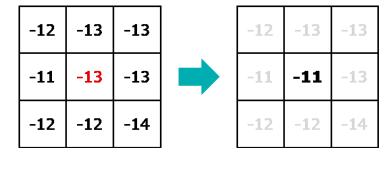
Generalization of surface to a coarser spatial resolution

- Simple shoal bias (maximum elevation) algorithm
- Target resolution vs. usage band:
 - Berthing, Harbour 2m * 2m
 - Approach 4m * 4m
 - Coastal 16m * 16m
- Custom in-house generalization tool (in Python, based on Caris Python API)

3. Merta – Ahti workflow, depth model modification 3/5

► Mosaic

- Combine separate 10km * 10km depth model tiles to a single surface
- Reduces edge effects on raster data processing/contouring
- Reduces the number of manual work steps
 - ▶ No need to repeat all following processing steps to each depth model tile separately

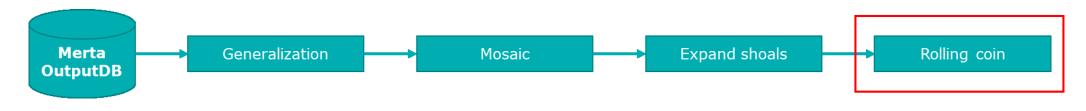


3. Merta – Ahti workflow, depth model modification 4/5

Expand shoals

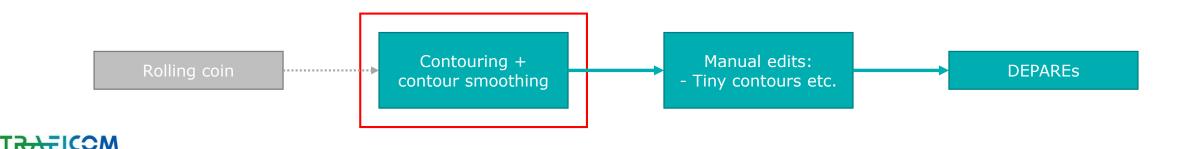
Essentially a 3*3 cell focal maximum (elevation) filter

- Effect: shoal cell values are buffered to immediate neighborhood (8 cells)
- ► Done to ensure that vector contours never cross shoal cells, even in the cell corners → safety
- Also contributes to total generalization of depth contours

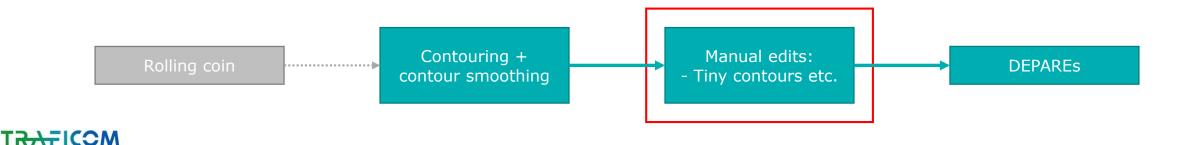


3. Merta – Ahti workflow, depth model modification 5/5

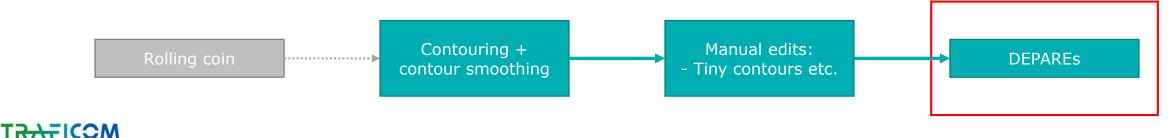
Rolling Coin


- In-house algorithm (Filppula 2018)
 - Thesis (Finnish) available online: <u>https://helda.helsinki.fi/handle/10138/273488</u>
 - Original source code (in C) available: <u>https://github.com/tfilppula/Bathytools</u>
- Used to smooth/generalize topography
- Enables automatic generation of generalized and safe depth contours
- Tool available also in Caris COTS software: Base Editor, HPD

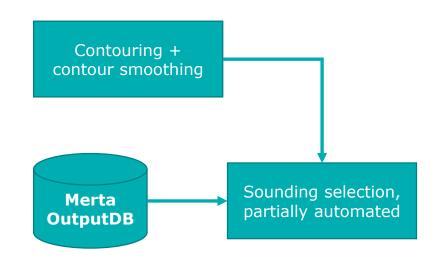
3. Merta – Ahti workflow, contours 1/2


- Contours are generated with Caris tools in HPD
- Contour lines are smoothed using Caris 'Smooth by direction bias' tool
 - Parameters defined separately for different usages (Kannari 2019)
 - Thesis available online (Finnish): <u>https://www.theseus.fi/handle/10024/170239</u>
- In areas of SBES/legacy data contours are manually digitized
 - Possible future automation?

3. Merta – Ahti workflow, contours 2/2


Tiny contours

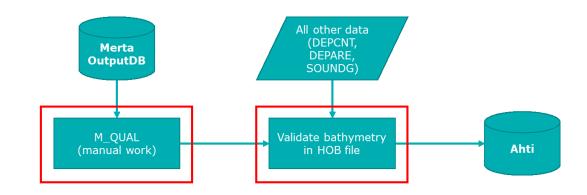
- Merging: tiny contours can be merged together for more generalized outcome
- Expanding: isolated tiny contours are expanded for cartographic reasons
- Other manual edits
 - Harbour areas: SLCONS, harbour structures vs. contours
 - Matching project area data with surrounding/existing data


3. Merta – Ahti workflow, depth areas

- Depth areas are generated based on DEPCNT, COALNE, SLCONS & cvrage
 - cvrage = project area
- Mostly manual process
 - Our current process produces DEPAREs that overlap LNDAREs and need to be deleted
 - We use COALNE/SLCONS as DEPCNT with VALDCO=0
 - This will probably change in the (near-) future, we are looking for better solutions
 - In many cases attributes (DRVAL1, DRVAL2) need to be populated manually
- We have proposed improvements to this functionality to Caris

3. Merta – Ahti workflow, sounding selection

- Sounding selection is partially automated
- Automation uses automatically generated depth contours
 - Create feature inside contour tool
 - Shoalest soundings inside closing shoal contours
 - Deepest soundings inside closing deep contours
- Additional sounding selections are done using Quick Creator tool
- Mapping file is used
 - Sounding attributes are populated automatically



3. Merta – Ahti workflow, M_QUAL & validation

M_QUAL is digitized manually based on Merta information

- Survey areas, depth model
- Manual digitizing is reasonably fast, proper generalization easy to achieve
- ► Validation
 - All data is validated in the .HOB file before committing to database
 - Peer review
 - S-58 Checks
 - Custom QC checks

Thank you for listening!

More information: topi.filppula@traficom.fi