

Harry Cook - MACHC22

Modelling coastal vulnerability in Belize: an application of Satellite Derived Bathymetry for coastal management

30 November - 3 December 2021

1/15

Integrated Coastal Zone Management

MACHC

- Mesoamerican reef recently removed from IUCN List of World Heritage In Danger.
- It is important to have a strong characterization of the coastal zone to enhance protection and coral reef resilience to ensure this status is retained.
- Optically clear waters well suited to SDB.
- Contribute towards Integrated Coastal Zone Management through focus on coastal protection element.

https://link.springer.com/article/10.1007/s10712-020-09586-5

Harry Cook - MACHC22

Project aims & objectives

Aim – provide merit for EO based approaches to evaluate coastal vulnerability in Belize for use in Integrated Coastal Zone Management to enhance resilience to climate change

Objs –

3.

MACHC

ARGANS

- Identify and quantify spatial variability of conditioning factors to coastal vulnerability in Belize
- Synthesise into analytical Coastal Vulnerability Index model using vulnerability indices
 - Validate model

This project will specifically focus on the geographic indicators presenting coastal vulnerability to storm surges and therefore risk is not evaluated.

Harry Cook - MACHC22

30 November - 3 December 2021

3 / 15

Modelling Coastal Vulnerability

SDB: A reminder

Satellite Derived Bathymetry (SDB) is the estimation of ocean depth using multispectral sensors. A correlation exists between the amount of reflected energy received at the sensor and the water depth.

Benefits:-

- Cost effective.
- Fast production.
- High resolution results.
- Remote areas become accessible.
- Side products (seabed classifications).

'Sentinel Coastal Charting Worldwide'

The objective of the project was to prove the capability of Sentinel-2 to produce reliable SDB reducing gaps within navigational charting at appropriate scales and an affordable price.

Harry Cook - MACHC22

SDB: ARGANS' research findings

Sentinel-2 or VHR Sensors?

SDB: ARGANS' research findings

Time-series Merge

SDB Software Developments

In-situ Depth

Measurement

Feed

Reflectance

Samples

The main physical equations don't scale by themselves.

Need to train on real world data

Validation of SDB results in Belize

Belize Water Quality

Coastal Slope Assessment

Modelling Coastal Vulnerability

$$CVI = \sqrt{\frac{(a * b * c * d * e * f)}{6}}$$

- Remote sensing risk parameters synthesised into bespoke Coastal Vulnerability model to determine areas of coast most susceptible to storm surges.
- First test following Koroglu et al. (2019) method showing promising results and agreement with existing InVEST models in absence of insitu data.
- Improve definition of risk groups with machine learning and characterisation of vulnerability through continued mapping.

Closure

- Coastal areas can be surveyed cheaply, regularly and efficiently using Satellite Derived Bathymetry from Sentinel-2. These datasets can be implemented into coastal models for cheap and efficient decision-making tools for coastal managers.
- Data can be optimised through utilisation of a time-series of images and machine learning of water quality properties associated with depth.
- The WCPE method demonstrates clear advantages of being transferable across multiple Sentinel-2 tiles in regions with morphological similarities with minimal human intervention to train models.
- Looking for opportunities to progress research through provision of insitu data for validation.

Modelling coastal vulnerability in Belize: an application of Satellite Derived Bathymetry for coastal management

Thanks for listening!!

Harry Cook Earth Observation Scientist & Technical Lead for SDB ARGANS Ltd. <u>hcook@argans.co.uk</u> <u>https://sdb.argans.co.uk</u>

30 November - 3 December 2021

15 / 15

Harry Cook - MACHC22