EOMAP SDB uses and benefits for Small Island Developing States

MACHC 2021 Dec 1st, 2021

Edward Albada EOMAP GmbH & Co. KG Germany, USA, Australia, Indonesia, UAE

© EOMAP, 2021

eomap.com

About EOMAP

- Experts in Aquatic Earth Observation services, established 2006
- Satellite-Derived Bathymetry (SDB) solution provider to global initiatives (EMODnet, Seabed2030, GEBCO), HO's for charting update (NZ, UK, AU, others) and industry
- Capability on accessing various satellite sources (active, passive) and analytical methods (physics-based, ML, AI, image interpretation)
- Seafloor related portfolio: SDB data, SDB software, Satellite-Lidar databases, seafloor mapping and characterisation, capacity building

EOMAP's SDB projects in the MACHC region

Darker blue represents higher frequency

Selected SDB projects

 1 Coastal Zone Management

 2 Coastal Engineering

 3 Update of nautical charts (UKHO)

 4 Coastal Resilience

 5 Safety of navigation

What is Satellite-Derived Bathymetry (SDB)?

Bathymetry mapping from space (airborne) sensors relies (a) on passive or active **sensors** measuring the reflected light from the seafloor (b) the **analytics**.

Satellite-Derived Bathymetry (SDB)

Bathymetric data using hyper/multispectral data, passive sensors → Dense bathymetric grids from shore to 1 time Secchi Depth

Satellite-Lidar Bathymetry (SLB)

Analysis of space born, active green lidar satellite sensor (ICESat 2 - ATLAS) → Point measurements along the tracklines down to 0.8-0.9 Secchi Depth

EOMAP's Physics-based SDB methods

EOMAP Physics-based SDB history

detect more.

EOMAP's SDB highlights: Charting

EOMAP's SDB integrated in nautical charts of the UK and NZ Hydrographic Offices in the Caribbean and Pacific region.

British Admiralty Chart BA 2066

New Zealand LINZ NZ8225 Neifu Harbour, Tonga

EOMAP's SDB to support single beam surveys

SDB and MBES comparison

SDB bathymetric change: Dynamic coastal change

SDB bathymetric change: Dynamic coastal change

Satellite imagery allow to track every place on earth every week to every day. → SDB can **continuously monitor** shallow water dynamics

SDB for Survey Optimization

- Review > 350,000 sq km using 15m resolution imagery
- 52 Areas of Interest identified
- Over 6,000 sq km of SDB using 2m resolution imagery
- Follow up with topo-bathy Airborne Lidar, Multibeam
 - 635 sq km of topo-bathy lidar data
 - Hydrographic Object Detection to 20m
 - 590 sq km of MBES data
 - 20m to 400m depths

Charting products containing SDB data from this project have already been published by LINZ

SDB for Survey Optimization

Prior to any Project Phases

- Antiope Reef
 - 180km from Niue (aircraft base)
 - Appeared as large area on chart
- Beverage Reef
 - 240km from Niue
 - Safe Haven for Vessels

SDB for Survey Optimization - Removal

Antiope Reef - After SDB Review

- Small Area 250m x 350m
- Not significant for Navigation
- Lidar not acquired

detect more.

SDB for Survey Optimization - Refinement

Beveridge Reef – After SDB review

- Reduction in ALB, MLB tracklines
- Allow technology comparison
- Add charting confidence

Satellite-Derived Bathymetry (SDB) & Satellite-Lidar Bathymetry

Satellite-Derived Bathymetry (SDB), Grand Cayman

detect more.

Satellite-Derived Bathymetry (SDB) and Satellite-Lidar Bathymtery (SLB), Grand Cayman

Satellite-Derived Bathymetry (SDB) and Satellite-Lidar Bathymtery (SLB), Grand Cayman

detect more.

Satellite-Derived Bathymetry (SDB) and Satellite-Lidar Bathymtery (SLB) grids

Data provision to EMODnet Bathymetry → Seabed2030 → global bathymetric grid GEBCO for EU / UK overseas region.

Release in early 2022

0 40 km Jamaica

Merged Satellite-Derived Bathymetry and Elevation Model

EOMAP detect more.

2m resolution Digital <u>Surface</u> Model combined with Satellite-Derived Bathymetry, Bahamas, Hog Cay

Bathymetry-Topography models for coastal management and planning.

2m resolution Digital <u>Terrain</u> Model combined with Satellite-Derived Bathymetry, Bahamas, Hog Cay

Bathymetry-Topography models for coastal management and planning.

Summary

We support you with tools, data and capacity to make full use of modern SDB and remote mapping solutions for shallow waters

Data/database offers

- Satellite-Derived Bathymetry (SDB) database and on-demand data in different spatial resolution
- Satellite-Lidar Bathymetry (SLB) database for the Caribbean
- Seafloor classification and characterization

Software offers

- SDB software, online and desktop
- SDB image support tools
- Databases and API access

