Satellite-Derived Bathymetry in Hydrographic Surveys

SWPHC16 February 13-15, 2019 Niue

EOMAP Germany, Australia

SDB and EOMAP

Satellite-Derived Bathymetry: SDB

Passive system: earth-orbiting sensors + sunlight Non-intrusive, rapid, low cost, shallow/remote/in-accessible locations Empirical: easy to implement, requires in situ data Physics-based: no in situ data, higher accuracy, uncertainty estimates

EOMAP

Mapping and monitoring aquatic environments worldwide First and leading commercial SDB provider (13 years) >75 projects in 25 locations in just the last 2 years Offices in Germany and Australia

SDB in hydrographic surveys

Integration of SDB in charts

Initial planning

Optimising resource deployment

SURVEY AREA ADJUSTMENT BASED ON SDB

October 2018

Contribute to safety of navigation

- Identify potential hazards for on-site ship-based surveys
- Identify 5m/10m contour to plan ship survey routes more efficiently and with reduced risks
- Increase understanding of local seabed and morphology

Tonga project example:

SDB used to aid in navigation for positioning tide gauges

Surveying

Surveying, data collection and processing

- Effectively fill data gaps in the challenging shallow water zone
- Access remote, large or otherwise in-accessible locations
- Reduce risk, time and/or cost
- Not as accurate (vertical) as ALB or MBES
- Uncertainty measure (per pixel)
- Can be refined with further calibration / validation procedures

Beveridge Reef SDB (2m grid resolution)

-25

-25

Uncertainties

New SDB file format: XYZV

SDB in Charts

Charting

EOMAP's SDB in chart BA2066, the first UKHO chart which includes SDB data.

Charting

Tuvalu SDB survey for UKHO

Supporting update of British Admiralty Charts using SDB for 7 atolls of Tuvalu. 11/2017-03/2018

Charting

21

SATELLITE DERIVED BATHYMETRY

Depths within the area indicated on the area shown on the Source Data Diagram are derived mainly from satellite imagery. Their vertical accuracy is typically \pm 3m. Uncharted dangers may exist. For further information see Admiralty publication 'The Mariners Handbook'.

A CHART HAIL A

LINZ PRNI Project

'Best Available Data'

	ZOC 1	Position Accuracy ²	Depth Accuracy ³	Seafloor Coverage	Typical Survey Characteristics ⁵
	A1	± 5 m + 5% depth	$=0.50 + 1\%d$ $\boxed{\text{Depth (m)} \text{Accuracy (m)}}$ 10 ± 0.6 30 ± 0.8 100 ± 1.5 1000 ± 10.5	Full area search undertaken. Significant seafloor features detected ⁴ and depths measured.	Controlled, systematic survey ⁶ high position and depth accuracy achieved using DGPS or a minimum three high quality lines of position (LOP) and a multibeam, channel or mechanical sweep system.
	A2	± 20 m	$= 1.00 + 2\%d$ Depth (m) Accuracy (m) 10 ± 1.2 30 ± 1.6 100 ± 3.0 1000 ± 21.0	Full area search undertaken. Significant seafloor features detected ⁴ and depths measured.	Controlled, systematic survey ⁶ achieving position and depth accuracy less than ZOC A1 and using a modern survey echosounder ⁷ and a sonar or mechanical sweep system.
	в	± 50 m	$= 1.00 + 2\%d$ Depth (m) Accuracy (m) 10 ± 1.2 30 ± 1.6 100 ± 3.0 1000 ± 21.0	Full area search not achieved; uncharted features, hazardous to surface navigation are not expected but may exist.	Controlled, systematic survey achieving similar depth but lesser position accuracies than ZOC A2, using a modern survey echosounder ⁵ , but no sonar or mechanical sweep system.
	с	± 500 m	$= 2.00 + 5\%d$ Depth (m) Accuracy (m) 10 ± 2.5 30 ± 3.5 100 ± 7.0 1000 ± 52.0	Full area search not achieved, depth anomalies may be expected.	Low accuracy survey or data collected on an opportunity basis such as soundings on passage.
	D	Worse than ZOC C	Worse than ZOC C	Full search not achieved, large depth anomalies expected.	Poor quality data or data that cannot be quality assessed due to lack of information.

© EOMAP, 2018

Can be fullfilled with SDB

How to label Satellite-Derived Bathymetry in Charts?

Current ZOC categories are not ideal for SDB evaluation

Alternatives: a matrix approach? separate SDB categories?

(current survey standards also not ideally suited)

To date, agencies have taken a pragmatic approach: 'Satellite-Derived Bathymetry'

Let's take the next step.

Monitoring change

Monitoring change

Frequent observation and mapping of shallow water, in order to identify changes of seabed in time.

Smarter survey strategies: e.g. continous survey & charting solution

SDB in hydrographic surveys

Integration of SDB in charts

A very low cost option

- 1. Implement band ratio algorithm (e.g. GEBCO Cookbook)
- 2. Collect some in situ depth data (range of depths and substrate types)
- 3. Use free (good quality) satellite imagery:
- Landsat 8: 30m resolution, online USGS portal
- Sentinel 2: 10m resolution, online ESA portal

Three more things

1. Storm surge and inundation: hydrodynamic modeling portal

Consortium to develop EU proposal for easyto-use, online portal for up-to-date hydrodynamic modeling

Seeking countries/organisations to express formal interest and nominate location(s).

No cost or obligations in return for free access to portal containing your location.

Deadline: next week.

2. SDB capacity building

Training: understanding SDB technologies, production, requirements (e.g. tender specifications), standards, integration into surveys and charts > SDB certification?

Initial, enthusiastic response from Thomas Dehling chair of IHO CBSC.

To be elaborated at Genoa, 2019.

Expressions of interest to CBSC (or EOMAP) welcome.

3. SDB Day 2019, May 14-16 Sunshine Coast, Australia www.sdbday.org

lemia

Government, Defence, Industry, Academia

Thank you

Magnus Wettle wettle@eomap.com

