

Developments in Satellite-Derived Bathymetry for hydrographic applications

SWPHC17, Wollongong, February 13, 2020

Dr. Magnus Wettle

EOMAP Germany | Australia | United States www.eomap.com

EOMAP and SDB

Mapping and monitoring aquatic environments worldwide

Satellite remote sensing – Earth Observation

Two main product suites:

- bathymetry and seafloor mapping
- water quality monitoring

Innovative, proprietary algorithms

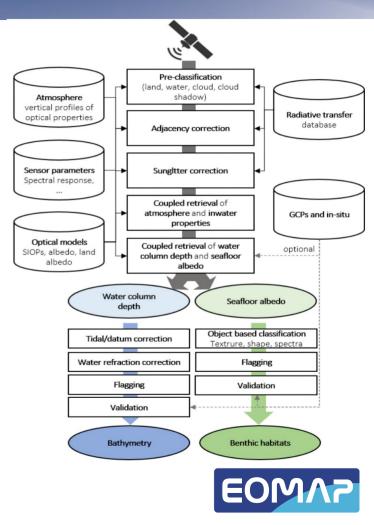
Robust and rapid processing systems

- 20+ years R&D
- SDB uptake accelerating
- >75 projects in >25 countries in last 2 years
- 2015: UKHO puts EOMAP SDB in chart
- 2019: LINZ puts EOMAP SDB in charts
- 2019: S-44 updated for SDB

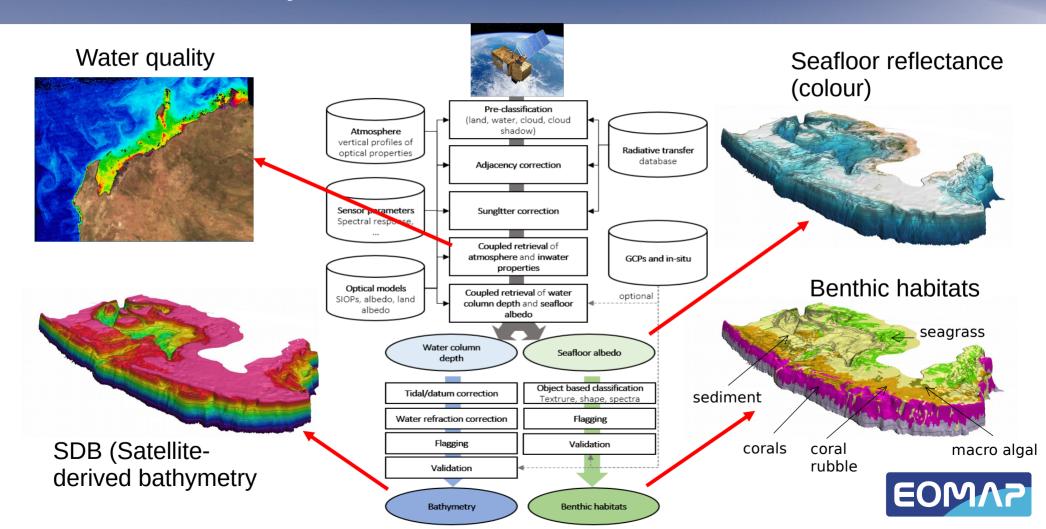
Remote Sensing – Earth Observation

Why it should be in your surveying toolkit:

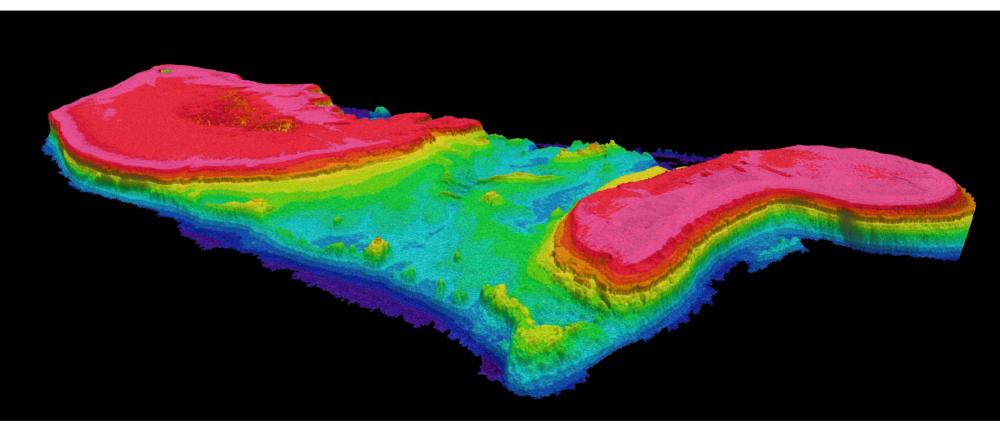
- · non-intrusive
- remote/inaccessible locations
- · extensive coverage
- spatial and temporal continuity
- time travel
- · complementary
- positioning
- · low cost
- rapid


Two main SDB approaches

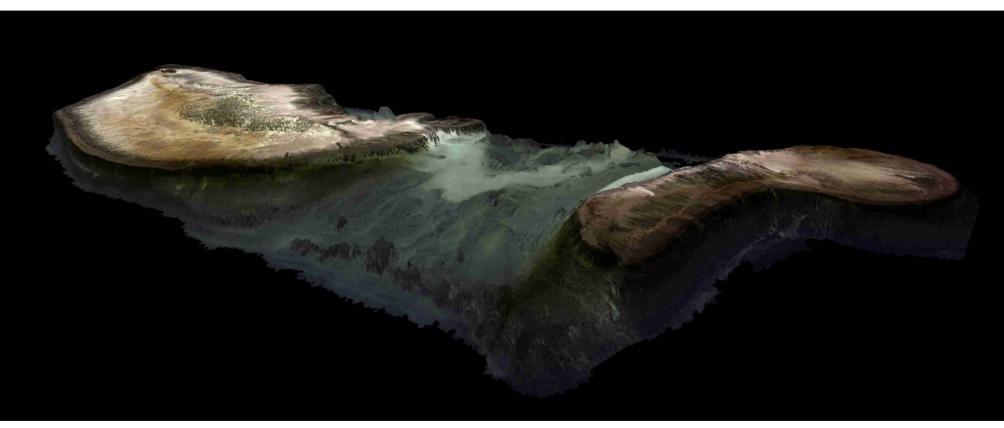
Empirical: fitting satellite values to survey data


Pros: Rapid and easy Cons: No control of uncertainties outside the training area; high quality training data required; issues with varying seafloor types; vertical accuracies e.g. GEBCO Cookbook

Physics-based: fully modeling the light pathway


<u>Pros:</u> Quantification of uncertainties; quantitative measure without in situ data, vertical accuracy, sensor and location agnostic <u>Cons:</u> Difficult

Physics-based Modular Inversion


SDB @2m grid resolution

Heron and Sykes Reef, Great Barrier Reef

Seafloor reflectance draped over SDB

Heron and Sykes Reef, Great Barrier Reef

SDB in context

Planning, Mapping and Monitoring

Fit-for-purpose as stand alone: budget, speed, remoteness, extent Optimising multi-disciplinary campaigns

Complementary

SDB less accurate than MBES and ALB (vertical) Shallow zone is highly problematic for MBES Mobilisation trivial vs. ALB and MBES SDB and ALB don't work in turbid waters

Otherwise in-accessible areas

Rapid, worldwide mapping from the comfort of your computer

Optimising a campaign with complementary technologies

Satellite-derived bathymetry of Pacific island states

Survey area: Kingdom of Tonga and several remote locations (up to 4,000+ km away)

Safety of navigation - economic development

LINZ PRNI Project

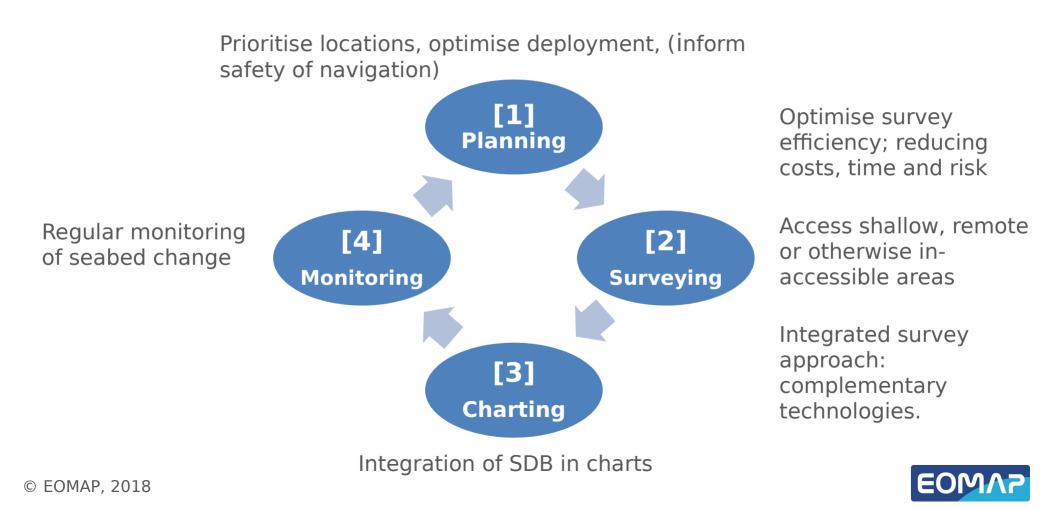
Entire Great Barrier Reef at 10m resolution

Stuart Phinn, Eva Kovacs, Mitchell Lyons, Meredith Roe, Emma Kennedy, Juan Ortiz, Yves Marie Bozec, Karlo Hock, Kathryn Markey, Peter Mumby, David Callaghan, Magnus Wettle, Mike Ronan, Marji Puotinen, Nick Wolf, Sarah Hamylton, Julie Verselloni, Javier Leon, Karen Joyce, Daniel Harris, Petra Lundgren

OF QUEENSLAND USTRALIA

Live benthic habitats of the **Great Barrier Reef**

Dr. Chris Roelfsema


Entire Great Barrier Reef at 10m resolution

All 3,000+ reefs in 3D Positioned within 20m

~ 16,000 sq km of shallow (0-20m) area

10m grid resolution

SDB in hydrographic surveys

New Developments

Standards

Charting standards

Can be fullfilled with SDB

© EOMAP, 2019

ZOC 1	Position Accuracy ²	Depth Accu	iracy ³	Seafloor Coverage	Typical Survey Characteristics ⁵
A1	± 5 m + 5% depth	=0.50 + 1 ¹ Depth (m) Acc 10 30 100 1000	%d <u>curacy (m)</u> ± 0.6 ± 0.8 ± 1.5 ± 10.5	Full area search undertaken. Significant seafloor features detected ⁴ and depths measured.	Controlled, systematic survey ⁶ high position and depth accuracy achieved using DGPS or a minimum three high quality lines of position (LOP) and a multibeam, channel or mechanical sweep system.
A2	± 20 m	= 1.00 + 2 Depth (m) Acc 10 30 100 1000	2%d curacy (m) ± 1.2 ± 1.6 ± 3.0 ± 21.0	Full area search undertaken. Significant seafloor features detected ⁴ and depths measured.	Controlled, systematic survey ⁶ achieving position and depth accuracy less than ZOC A1 and using a modern survey echosounder ⁷ and a sonar or mechanical sweep system.
в	± 50 m	= 1.00 + 2 Depth (m) Act 10 30 100 1000	2%d <u>t 1.2</u> <u>t 1.6</u> <u>t 3.0</u> <u>t 21.0</u>	Full area search not achieved; uncharted features, hazardous to surface navigation are not expected but may exist.	Controlled, systematic survey achieving similar depth but lesser position accuracies than ZOC A2, using a modern survey echosounder ⁵ , but no sonar or mechanical sweep system.
с	± 500 m	= 2.00 + 5 Depth (m) Acc 10 30 100 1000	5%d curacy (m) ± 2.5 ± 3.5 ± 7.0 ± 52.0	Full area search not achieved, depth anomalies may be expected.	Low accuracy survey or data collected on an opportunity basis such as soundings on passage.
D	Worse than ZOC C	Worse than 2	ZOC C	Full search not achieved, large depth anomalies expected.	Poor quality data or data that cannot be quality assessed due to lack of information.

Ε(

Survey standards

IHO S-44

IHO STANDARDS FOR HYDROGRAPHIC SURVEYS (S-44)

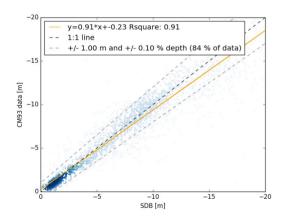
6th Edition draft 1.0 February 2019

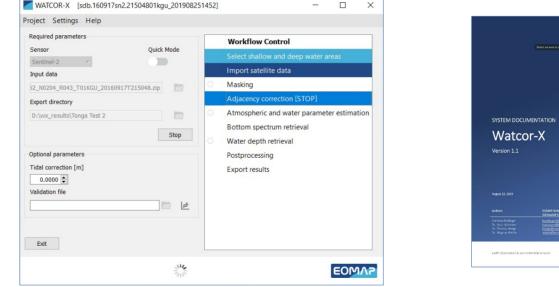
Matrix Specifications for the Collection of Hydrographic Data

(To be read in conjunction with the full text set out in this document.)

	ма	TRIX Proposal 2, Standards Only	Ver . 5	CAN	Italy	does someone need / use this now			Section uncertai		Tabl e2	USA	A U S	G B R	Fu gro		
	1	Parameter	1	2	3	4	5	6	7	8	9	10	1	1 2	13	1 4	1 5
Ι	D					Depth of water											
ļ	а	THU (Constant)		>50m	50m	20m	10m	5m	2m	1m	0.5	0.1					
ļ	b	THU (Variable, Depth Dependent)	0	>20%	20%	10%	5%	2%	1%								
ļ	с	TVU (Constant)		>2m	2m	1m	0.5m	0.25	0.2m	0.15m	0.1	0.05					L.,
	d	TVU (Variable, Depth Dependent)	0	>20%	20%	10%	5%	2.30 %	2%	1.3%	1%	0.75 %	o				
	e 1	Bathymetry Density Coverage		1%	1.70 %	2.30%	3%	5%	100% (0% overlap)	120% (10% overlap)	150 % (25 % overl ap)	200 % (50 % overl ap)					
	e 1	Bottom Feature Search		<10%	10%	20%	30%	50%	100% (0% overlap)	120% (10% overlap)	150 % (25 % overl ap)	200 % (50 % overl ap)					
	e 1	Seafloor Search (combined OPTION for coverage and line spacing)		1%	1.70 %	2.30%	3%	5%	100% (0% overlap)	120% (10% overlap)	150 % (25 % overl ap)	200 % (50 % overl ap)					
	e	Seafloor Search		>= 5 x average depth	4 x avera ge depth	3 x average depth or 25m (whichever is greater); bathymetric lidar 5x5 spot spacing	100 % Sear ch	120 % Sear ch (10 % overl ap)	150% Searc h (25% overla p)	200% Searc h (50% overla p)							
	g	Feature Size Detection (Constant)		>5	5	2	1	0.5	0.25	0.1							
		Feature Detection (Variable, Depth Dependent)	0	>25% (or 20 - MAGNU S)	25% (or 20 - MAGN	10%	10% (bey ond 50m	I	I	1			1				I

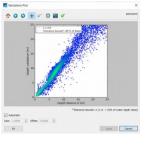
New Developments


Software

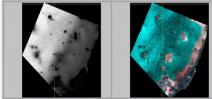

Enabling National Agencies

1. Watcor-X: autonomous, worldwide SDB capability

A physics-based SDB standalone solution.



Watcor-X: simple


WATCOR-X			1 0 - 13		\times
Project Settings Help					
Required parameters Sensor Sentinel-2 1 Input data Export directory	Quick Mode				
Optional parameters Tidal correction [m] 0.0000 \$ Validation file	Apply				
Exit					
				EO№	۱۷۶

Watcor-X: sophisticated

pe Viewer		- 0
iona		
der Depth	Values	Bottom Reflectance
Multiband color 🗢	Vieter depth [m] Bottom ref. [%]	Multiband color ·
nd 1 water depth -	Band 1 0.0000 0.0000	Band 1 84 664.45 mm *
nd 2 lawer confidence boundary *	Band 2 0.0000 0.0000	Band 2 83 565.03 mm *
nd 3 upper confidence boundary *	Band3 0.0000 0.0000	Band 3 82 496.54 mm 🔹 🖌
1. 1. IL		11. II. III

Bottom type configuration

1 op

sediment	dark vegetation	sediment mixing
	s	ediment reflectance value
Channel 1 ((443.93 nm)	0.108849
Channel 2 ((496.54 nm)	0.196538
Channel 3 ((560.01 nm)	0.294168
Channel 4 ((664.45 nm)	0.196538
Channel 5 ((703.89 nm)	0.196538
Channel 6 ((740.22 nm)	0.044823
Channel 7 ((782.47 nm)	0.054034
Channel 8 ((835.11 nm)	0.032110
Channel 9 ((864.80 nm)	0.040000
Channel 10	(945.03 nm)	1.000000
Channel 11	(1373.46 nm)	1.000000
Channel 12	(1613.66 nm)	1.000000
Channel 13	(2202.37 nm)	1.000000

		1		
		I.		
8				
8		199		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		· ·	4
	3		-	
C & A			and the second second second	1

Water Properties

Suspended matter

Yellow substance

Restore defaults

Min value 0.07584138 2 Max value 0.63201153 🖨

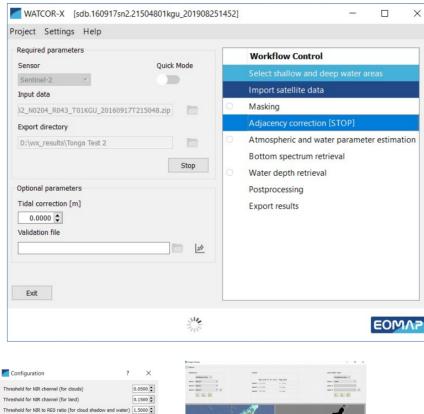
Min value 0.00214431 🖨

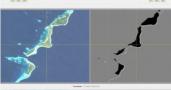
Max value 0.00929202 \$

- 0 >

Save

Cancel

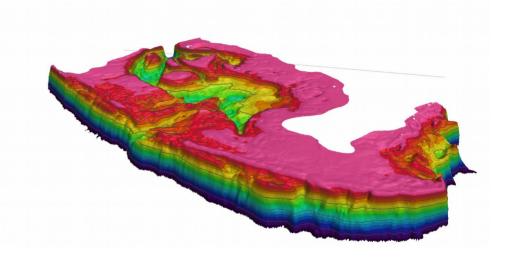

Restore defaults


Save

Cancel

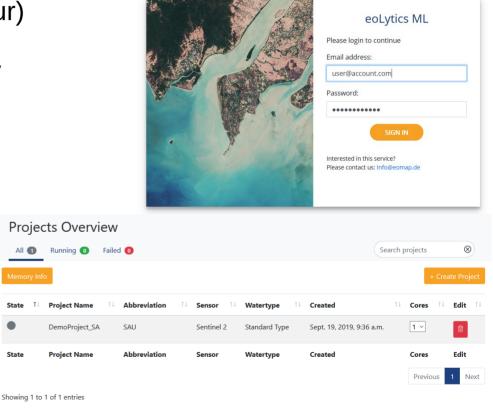
Typcial water species concentration Suspended matter 0.25280461

Yellow substance 0.00714771


	Select an area to comment on	
SYSTEM DOCUM	IENTATION	
Watco	r-X	
Version 1.1		
Ver51011 1.1		
August 22, 2019		
August 22, 2019 Authons:	EOMAP GmbH & Co. KG, Schlosshof 4, D-82229 Seefeld	Phone
Authors: Christian Bödinger Dr. Knut Hartmann	Schlosshof 4, D-82229 Seefeld boedinger @examp.de hartmann@earmap.de	+49 8152 9986 115 +49 8152 9986 113
Authors:	Schlosshof 4, D-82229 Seefeld	Phone +49 8152 9986 115 +49 8152 9986 113 +61 0455 -234 449

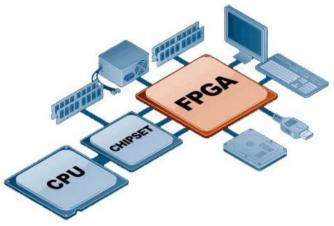
Set defaults Save all Cance

(The very low cost option)


- 1. Implement band ratio algorithm (e.g. GEBCO Cookbook)
- Collect some in situ depth data (range of depths and substrate types)
- 3. Use free (good quality) satellite image
- Landsat 8: 30m resolution, online USGS portal
- <u>Sentinel 2: 10m resolution, online ESA portal</u>

2. eoLytics SDB

- Physics + Machine Learning (more rigour)
- Requires limited but good quality survey data
- · Low cost
- Easy to use
- Example application: shallow areas to map/monitor, access w/ e.g. single beam
 - Capability development



New Developments: Speed

Hardware acceleration (funding from European Space Agency):

Field Programmable Gate Arrays and GPUs: - expect to reduce processing time by 95% or more

Software acceleration:

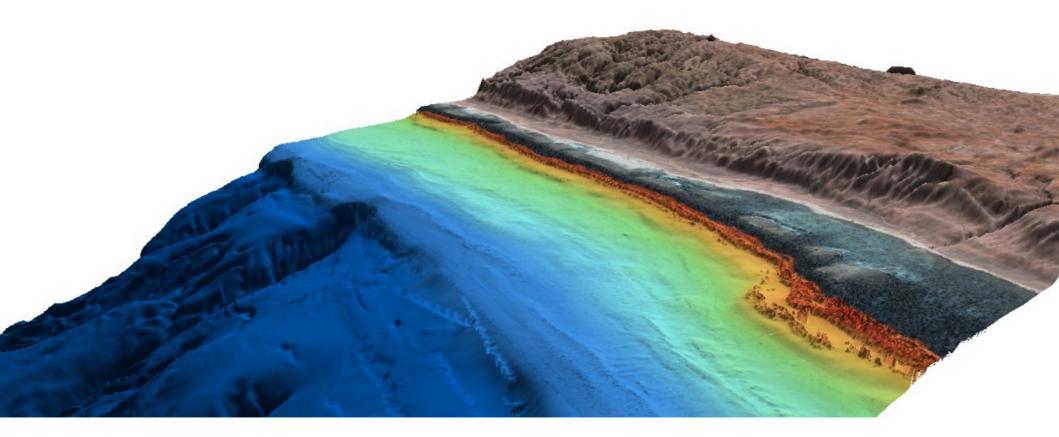
Implications:

- Near real time SDB (in the field, defence, emergency response...)
- Improved accuracy: Multi-image processing (EOMAP patent)
- <u>Very</u> large areas.....

Global SDB Layer: now technically possible

- Operational software
- Accelerated processing
- ICESat, onboard LIDAR: calibration and validation (limited coverage, narrow transects)
- Combining physics-based, AI and ML

Objective: all (optically) shallow waters globally


Summary

Satellite-derived bathymetry

- Non-intrusive, remote/inaccessible locations, extensive coverage, low cost, rapid, trade offs, complementary or stand alone
- · Planning, Mapping, Monitoring
- New Developments:
- · S-44 v6, matrix expanded to accommodate SDB specifications
- · Software (and training): Enabling National Agencies and capacity building
- · Hardware Acceleration: near-real time, improved accuracy
- · Ready for global SDB layer

Thank you

