NOAA’s Global Extratropical Surge and Tide Operational Forecast System (Global ESTOFS)

Dr. Greg Seroka1, Physical Scientist, Coastal Marine Modeling Branch

Team:
Yuji Funakoshi1, Edward Myers1, Saeed Moghimi1, John Kelley1, William Pringle2, Maria Teresa Contreras-Vargas2, Joannes Westerink2, Jaime Calzada1, Liujuan Tang1, Georgios Britzolakis1, Jack Riley1, Erin Nagel1, Charles Seaton3, Joseph Zhang4, Shachak Pe’eri1

1 NOAA/NOS/Office of Coast Survey; 2 University of Notre Dame; 3 Columbia River Inter-Tribal Fish Commission; 4 Virginia Institute of Marine Science

NOAA: National Oceanic and Atmospheric Administration;
NOS: National Ocean Service

18th Meeting of the IHO South-West Pacific Hydrographic Commission
February 17-19, 2021
Motivation

1. Flooding from storm surge is a significant risk to coastal cities globally
2. Globalization of maritime commerce drives a need for global navigation solutions
3. A high resolution, operational, global storm surge model provides local, official water level forecast guidance across the world for:
 a) Extreme event mitigation, disaster reduction
 b) Marine navigation
4. Support Marine Spatial Data Infrastructure (MSDI)
End users of a storm surge model

- **Storm surge forecasters**, e.g.
 - NOAA National Weather Service (NWS) Weather Forecast Offices (WFOs) to generate flood forecasts during winter storms
 - NOAA Ocean Prediction Center (OPC) for operational extratropical coastal storm surge forecasts in Marine Weather Discussions

- **Wave forecasters**, e.g.
 - NWS WFOs to generate seas/surf forecasts using NWS’s Nearshore Wave Prediction System (storm surge model water levels are an input)

- **Mariners**, e.g.
 - Pilots of ships to navigate into ports safely and efficiently based on tide forecasts
ESTOFS Description

NOAA/NOS’ model is, to our knowledge, the highest resolution operational global surge model available today. Coastline resolution is at least 1.5 km, up to 80 m globally.

Now, focusing on 1) providing even higher resolution (25 m) in key ports; 2) improving model bathymetry & shoreline

Extratropical Storm Surge & Tide Operational Forecast System (ESTOFS)

- Advanced CIRCulation (ADCIRC) core hydrodynamic model
- Provides 7-day water level forecasts
- Driven by NOAA Global Forecast System (GFS) atmospheric model (10 m winds, mean SLP, sea ice)
- Provides water level forecast guidance: tides, storm surge, and their combination
- 4 cycles a day: 00, 06, 12, and 18 UTC
Previous ESTOFS Coverage

Gaps in Coverage:
- Western Alaska
- American Samoa
- Northwest Pacific

Operational Needs:
- Unification of ESTOFS modeling infrastructure
- Reduction of bias and errors due to removal of the grid boundaries
- Inclusion of internal tide-induced dissipation in deep ocean
- Sea-ice effect on wind drag
- Bias correction
Global ESTOFS Coverage

Global ESTOFS mesh
8,063,409 nodes
15,478,900 elements

Point output
558 locations

Implemented 24 Nov 2020

Coastal resolution:
Up to 80 m for Hawaii and US West Coast
Up to 90-120 m for Pacific Islands (e.g. Guam, Samoa, Marianas, Palau)
Up to 120m for US East Coast, PR, Micronesia, Alaska

Bias Correction
Global ESTOFS Description

Bias Correction Validation
- Correct bias in simulated water levels based on observations

Sample imagery

2005 Katrina water levels at Dauphin Island, AL

Maximum forecast water levels (m MSL) from a forecast cycle of Global ESTOFS.
Pacific Enhancement Project

Pacific Ocean enhancements to Global ESTOFS:

- area of high priority for the U.S.
- higher resolution, improved mesh in key areas
- improved bathymetry
- ocean model enhancements to provide not only water level forecast guidance but also surface currents for navigation
- end goal is to support under keel clearance, route planning

Extract for Pacific topography and bathymetry using boundary location above

Proposed boundary location for Pacific mesh that will be enhanced
Navigation Support: S-104 water levels

- One of our biggest challenges: our coastal ocean models are referenced to MSL. For charting and navigation, we need to use chart datum, e.g. MLLW or LAT.

- Global ESTOFS forecast guidance is being encoded in formats following International Hydrographic Organization’s (IHO) S-100 Universal Hydrographic Data framework

- For example, S-104 water levels relative to chart datum

Prototype S-104 water level forecast guidance from Global ESTOFS, produced and displayed on Electronic Navigational Chart (ENC) Band 2 tiles for Palau in the Pacific Ocean.

Same as figure to left, but for Samoa in the Pacific Ocean.
Next generation of surge models

Water levels and currents support improved:
• route monitoring/berthing
• route planning
How to access Global ESTOFS results

cera.coastalrisk.live

Screenshots of Global ESTOFS storm surge forecast guidance for SW Pacific displayed on CERA’s map viewer (zoomable)

registry.opendata.aws/noaa-gestofs

Screenshot of Global ESTOFS output on Amazon cloud (AWS) via NOAA Big Data
How to access Global ESTOFS results

We are more than happy to provide training workshops for the end user community to learn how to use the model forecast guidance

nowcoast.noaa.gov
Screenshot of Global ESTOFS storm surge forecast guidance for Pacific region displaying nowCOAST’s map viewer

Other options:
National Weather Service (NWS) Ocean Prediction Center:
https://ocean.weather.gov/estofs/estofs_surge_info.php

NWS NOMADS:
https://nomads.ncep.noaa.gov/
Thanks for your attention!