
Explaining Feature 

Catalogues

DQWG15-04.1C

Informative

DQWG15, Monaco 4-7 February 2020



CLASSES

DQWG15, Monaco 4-7 February 2020

• A class is a description of a set of objects that share the same 

attributes, operations, methods, relationships, behaviour and 

constraints

• A class represents a concept being modelled

• Depending on the kind of model, the concept may be based on:

• the real world (for a conceptual model);

• implementation between platform independent system 

concepts (for specification models);

• platform specific system concepts (for implementation models)

• A UML class has a name, a set of attributes, a set of operations 

and constraints. In S-100 operations are not used. A class may 

participate in associations

S-100 Part 1 – Conceptual Schema Language, page 2



SIMPLE ATTRIBUTES -> VALUE TYPES

DQWG15, Monaco 4-7 February 2020

• The following primitive types are supported in the S-100 UML Diagrams: 

• integer: a signed integer number

• PositiveInteger: an unsigned integer number > 0

• NonNegativeInteger: an unsigned integer ≥ 0

• Real: a signed real (floating point) number consisting of a mantissa and an exponent

• Boolean: a value representing binary logic

• Characterstring: a CharacterString is an arbitrary-length sequence of characters 

including accents and special characters from repertoire of one of the adapted character 

sets

• Date: a date gives values for year, month and day according to the Gregorian calendar

• Time: a time given by an hour, minute and second in the 24-hour clock system.

• DateTime: a DateTime is a combination of a date and a time type (follow ISO 8601)

• TruncatedDate: a TruncatedDate allows a partial date to be given (YYYMMDD)

• Enumeration

S-100 Part 1 – Conceptual Schema Language, page 4



ENUMERATIONS

DQWG15, Monaco 4-7 February 2020

• An enumerated type declaration defines a list of valid identifiers of 

mnemonic words

• Attributes of an enumerated type can only take values from this list

<< enumeration>>
valueTypes

integer
PositiveInteger

NonNegativeInteger
real

boolean
characterString

date
time

dateTime
truncatedDate
enumeration

S-100 Part 1 – Conceptual Schema Language, page 8



CODELIST TYPES

DQWG15, Monaco 4-7 February 2020

• Codelist types may be used for open enumerations whose membership 

cannot be known at the level of the product specification, for reuse of 

information model fragments, or for more efficient catalogue management. 

Specifically, they may be used:

a) for enumerations whose members are not all knowable at the level of the 

application schema;

b) for lists defined or controlled by external authorities;

c) for lists common to multiple S-100 domains;

d) if the set of allowed values needs to be extended without a major revision 

of the date specification;

e) long lists of potential values which would clutter or bloat feature catalogues

S-100 Part 1 – Conceptual Schema Language, page 9



CODELIST TYPES [2]

DQWG15, Monaco 4-7 February 2020

• A codelist type declaration must be one of the following 3 types:

1) an open enumeration, which is a list of valid key-value combinations (that 

is codevalue mappings) with a provision for allowing user communities to 

provide allowed values in a specified format

2) a closed dictionary, which is a dictionary (vocabulary) of key-value 

combinations in a known format, identifiable by a Uniform Resource 

Identifier and which can be located by the application of standard modern 

techniques for locating resources. Additional values cannot be provided

3) an open dictionary, which is a dictionary (vocabulary) of key-value 

combinations in a known format, identifiable by a Uniform Resource 

Identifier, as defined above, with the additional proviso that additional 

values conforming to a specified format may be provided
S-100 Part 1 – Conceptual Schema Language, page 9



CODELIST EXAMPLES

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 10



RELATIONSHIPS AND ASSOCIATIONS

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 10



ASSOCIATIONS

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 11

Figure above shows an association named “A” with its two respective 

association-ends. The role name r1 identifies the association-end which is 

connected to the class named Class2 



SPECIFICATION OF MULTIPLICITY

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 11



AGGREGATION

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 11

An aggregation association is a relationship between two classes, in which 

one of the classes plays the role of container and the other plays the role of 

a containee. The diamond-shaped aggregation symbol at the association-

end close to class1 indicates that class1 is an aggregation consisting of 

class3. The meaning of this is that class3 is a part of class1



COMPOSITION (STRONG AGGREGATION)

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 12

A composition association is a strong aggregation. In a composition 

association, if a container object is deleted then all of its containee objects 

are deleted as well. The composition association shall be used when the 

objects representing the parts of a container object, cannot exist without the 

container object

The diamond-shaped composition symbol has a solid fill. Here class1 

objects consist of one-or-more class4 objects, and the class4 objects cannot 

exist unless the class1 object also exists. The required (implied) multiplicity 

for the owner class is always one. The containees, or parts, cannot be 

shared among multiple owners



STEREOTYPES

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 13

In S-100 the following stereotypes are used:

a) Interface

b) Type

c) Enumeration

d) MetaClass

e) DataType

f) Codelist



STEREOTYPES - Interface

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 13

<<Interface>> 

a definition of a set of operations that is supported by objects having this 

interface



STEREOTYPES - Type

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 13

<<Type>> 

a stereotyped class used for specification of a domain of instances

(objects), together with the operations applicable to the objects. A type may 

have attributes and associations



STEREOTYPES - Enumeration

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 13

<<Enumeration>> 

A data type whose instances form a list of named literal values. Both the 

enumeration name and its literal values are declared. Enumeration means a 

short list of well-understood potential values within a class. Classic 

examples are Boolean that has only 2 (or 3) potential values TRUE, FALSE 

(and NULL). Most enumerations will be encoded as a sequential set of 

Integers, unless specified otherwise. The actual encoding is normally only of 

use to the programming language compilers. In S-100 Codelists taken from 

the ISO 19100 standards are classified as enumerations



STEREOTYPES - MetaClass

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 13

<<MetaClass>> 

A class whose instances are classes. Metaclasses are typically used in the 

construction of metamodels. The meaning of metaclass is an object class 

whose primary purpose is to hold metadata about another class 

For example, “FeatureType” and “AttributeType” are metaclasses for 

“Feature” and “Attribute”



STEREOTYPES - DataType

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 12

<<DataType>> 

A descriptor of a set of values that lack identity (independent

existence and the possibility of side effects). Data types include primitive 

predefined types and user-definable types. A DataType is thus a class with 

few or no operations whose primary purpose is to hold the abstract state of 

another class for transmittal, storage, encoding or persistent storage



STEREOTYPES - Codelist

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 13

<<Codelist>> 

A data type whose instances form a list of named literals, some or all of 

whose members may not be known. The Codelist name is declared in the 

application schema. The list members may be described by either (i) a list of 

codes and corresponding literals augmented with a pattern allowing 

additional values conforming to a certain format, or (ii) a pointer to a 

resource consisting of a list of code/literal mappings. The resource is called 

a vocabulary or dictionary. Tagged values attached to the Codelist 

declaration indicate which form is used and the location of the resource 

(generally as a URI). Codelists should be used only when an

enumeration is either unusable or inefficient (for example, if the full list of 

values is not known to the specification authors or the list of allowed values 

is long, volatile, controlled by another authority, and/or shared by multiple 

domains)



Optional, conditional and mandatory – attributes and 

associations

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 14

• In UML all attributes are per default mandatory. The possibility to show 

multiplicity for attributes and association role names provide a way of 

describing optional and conditional attributes

• The default is mandatory which thus do not need to be specified. Where a 

multiplicity of 0..1 or 0..* is specified it means that this attribute may be 

present or may be omitted

• An attribute may be defined as conditional, meaning that it is optional 

depending on other attributes. The dependencies may be by existence-

dependence of other (optional) attributes or by the values of other 

attributes

• If unspecified, the default multiplicity for associations is 0..*, and the 

default multiplicity for attributes is 1



NAMING AND NAME SPACES - CLASSES

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 14

• All classes shall have unique names

• All classes shall be defined within a package

• Class names shall start with an upper case letter

• A class shall not have a name that is based on its external usage, since 

this may limit reuse

• A class name shall not contain spaces

• Separate words in a class name shall be concatenated

• Each subword in a name shall begin with a capital letter, such as 

“XnnnYmmm”

• The name of an association must be unique within the context of a class 

and its supertypes or else it must be derived



NAMING AND NAME SPACES - ATTRIBUTES

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 14

• Attribute names shall start with a lower-case letter. 

(example: firstName, lastName)

• Precise technical names should be used for attributes and operations to 

avoid confusion 

(example: alphaCodeIdentifier, dateOfLastChange)

• Documentation fields should be used extensively to describe element

• Don't reiterate class names inside the attribute names. Keep names short 

if possible 

(example: class S-100_WorkingGroup, attribute workingGroupName)



NAMING CONVENTIONS

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 14

• Use precise and understandable technical names for classes, attributes

• For attributes and association roles capitalize only the first letter of each 

word after the first word that is combined in a name

• For each name of a class, package, type-specification and association 

names capitalize the first letter of the first word

• Examples: index not i, computePartialDerivatives, 

CoordinateTransformation

• Keep names as short as practical. Use standard abbreviations if 

understandable, skip prepositions, and drop verbs when they do not 

significantly add to meaning of the name



RESTRICTIVE NAMING CONVENTION

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 15

• All class names should be unique in a case insensitive manner

• Class name should be unique across the entire model (so as not to create 

a problem with many UML tools)

• Package names should be unique across the entire model. (for the same 

reason)

• Every effort should be applied to eliminate multiple classes instantiating 

the same concept



PACKAGE STRUCTURE

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 16

A UML package is a 

container that is used to 

group declarations of 

subpackages, classes and

their associations. The 

package structure in UML 

enables a hierarchical 

structure of

subpackages, class 

declarations, and 

associations. A package 

shall be used to represent a

schema



DOCUMENTATION OF MODELS IN S-100

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 16

In addition to the diagrams, it is necessary to document the semantics of the 

model. The meaning of attributes, associations, operations and constraints 

needs to be explained. This is done by means of context tables. A context 

table is defined for each class; it has the following columns:

• Role Name

• Name

• Description

• Multiplicity

• Data Type

• Remarks



ROLE NAME

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 16

The Role Name column specifies what property of the class is described in 

this row. Possible values are:

• Class – The class itself

• Attribute – An attribute of that class

• Association – An association to another class

• Enumeration – An enumerated data type

• Literal – A value of an enumerated data type



EXAMPLE OF THE USE OF CONTEXT TABLES [1]

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 17



EXAMPLE OF THE USE OF CONTEXT TABLES [2]

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 17

Role Name Name Description Multiplicity Data Type Remarks

Class WorkingGroup
A group of experts doing 
some useful work

- -

Attribute name
The name of the working 
group

1 CharacterString

Attribute organization
The organization
responsible for the working 
group

1 CI_ResponsibleParty

Attribute scope
The reason why so many 
people travel around the 
world

1 CharacterString

Association member
A person that is designated
to contribute to the group

1..* Person



EXAMPLE OF THE USE OF CONTEXT TABLES [3]

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 17

Role Name Name Description Multiplicity Data Type Remarks

Class Person A human being - -

Attribute name The name of that person 1 CharacterString

Attribute firstName
The first name of the 
person

1 CharacterString

Attribute middleInitial
The middle initial of the 
person

0..1 Character

Attribute dateOfBirth
The date when the person 
was born 

1 Date

Association workingGroup
A working group the person
contributes to

0..* WorkingGroup



EXAMPLE OF THE USE OF CONTEXT TABLES [4]

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 18

Role Name Name Description Multiplicity Data Type Remarks

Class Membership
A class describing the
membership of a person
in a working group

- -

Attribute role
The role that the person
has in the working group

0..1 WG_Role

Attribute representing

The organization which is
represented by the
person in the working
group

1 CI_ResponsibleParty



EXAMPLE OF THE USE OF CONTEXT TABLES [5]

DQWG15, Monaco 4-7 February 2020

S-100 Part 1 – Conceptual Schema Language, page 18

Role Name Name Description Remarks

Enumeration WG_Role The roles people can have in a working group

Literal chairman The gov’nor

Literal deputy His best friend

Literal secretary
Poor man (or woman) has to have his (or her) fingers always 
on the keyboard

Literal IHO member
Working group member respresenting a member state with 
voting rights

Literal Expert Contributor
Working group member, usually from the industry or end 
user community

Literal Other Working group member who likes to travel around the world



IHO HSSC Data Quality Working Group

DQWG15, Monaco 4-7 February 2020


