
Proposal for a new encryption scheme
Analysing of the existing schemes
In the existing S-63 and S-100 encryption scheme the data will be encrypted with symmetric block

cypher algorithms. S-63 uses the Blowfish algorithm with the ECB operation mode (Electronic code

book) and S-100 uses the AES algorithm with a modified CBC operation mode (Cipher Block

Chaining). For the fast encryption and decryption such symmetric key algorithms are a good choice.

Especially the AES algorithm is currently a widely used and accepted algorithm.

Symmetric encryption algorithm uses the same key for the encryption and the decryption. The

problem here is how decoder and encoder can exchange these keys in a secure way.

In the existing schemes the data are encrypted with so called “Cell Keys”. Such “Cell Keys” will be

provided by a data server in an encrypted form called “Cell Permits”. The key for that encryption

process is based on the “Hardware Identifier”. This “Hardware Identifier” identifies a system such as

an ECDIS. It is provided to the data server in form of an “User Permit”. This “User Permit” contains

the “Hardware Identifier” again in an encrypted form. The key for this encryption is the so called

“Manufacturer Key”. This “Manufacturer Key” must be kept secret, with other words it is the private

key of the OEM. The “User Permit” contains also a “Manufacturer identifier”, a public available

identifier that tells the data server who has created the “User Permit”. Then the data server can

decrypt the “User Permit” with the corresponding “Manufacturer Key”. To do so each data server

must have the “Manufacturer Keys” of any OEM that is a member of the encryption scheme.

Though the data server must keep this list secret the risk that the private keys become known

increases with any new data server. The entire security of the existing scheme is because no possible

attacker has the knowledge of such keys.

A private key should only be known to its owner and only the owner should be responsible for this

information. In the current scheme this rule is broken twice:

 The “Manufacturer Key” is generated by the scheme administrator and then send to the

OEM.

 A list of all “Manufacturer Keys” is distributed to each data server.

Though the S-100 scheme uses more modern algorithms for the encryption with state-of-the-art key

length the general problem exists exactly in the same way as described above.

The problem to be solved is: How the OEM can encrypt the “Hardware identifier” so that the data

server can decrypt it without the knowledge of the OEMs private key.

Two solutions are possible:

1. Using asymmetric encryption algorithms or

2. Using an asymmetric key exchange algorithm

The latter combines the convenience of public-key crypto system with the efficiency of a symmetric-

key crypto system. Therefor the proposal made in this document is based on an asymmetric key

exchange.

Another problem that the current security schemes have is the missing of CRLs (Certificate

Revocation List). This is necessary to indicate which certificates should not be used though their

validity period is not expired. Usually, certificates are revoked if their corresponding private keys have

been compromised. The introduction of CRLs should be made as soon as possible but is not in the

scope of this paper.

Background

Elliptic Curve Diffie Hellman – ECDH

Elliptic Curves
For the purpose of this proposal the theory of elliptic curves should be limited to its most interesting

property with regards to cryptography. The curves used for cryptography are plane curves over a

finite field which consists of the points that satisfying the formula of the curve.

For a public key crypto system, it is important that a mathematical problem exists that can be easily

solved but the ‘reverse’ operation is not solvable in polynomial time. For elliptical curves this

problem is known as “elliptic curve discrete logarithm problem” ECDLP. The security depends on the

ability to calculate a point multiplication and the inability to compute the multiplicand a given the

original point P and product point P’.

𝑷′ = 𝒂 ∙ 𝑷

The size of the elliptic curve, measured by the total number of discrete integer pairs satisfying the

curve equation, determines the difficulty of the problem.

The main advantage of elliptic curves over other public key algorithms is the shorter key length,

reducing storage, transmission, and performance requirements.

That makes elliptic curves the perfect tool for a secure key exchange.

The Key Exchange
Alice and Bob want to exchange a secret key. To be precise in this method they do not exchange the

key but rather establish a shared secret and derive the key from that secret.

Alice and Bob must agree on the same elliptic curve. Several curves have been developed and one

very popular is the curve 25519. For each curve exists a ‘base point’ or generator from which all

other points can be generated. Let’s denote that point G. Both Alice and Bob choose randomly a

number p in the interval [1, n-1] where n is the size of the finite field. This number p is their private

key. Then both calculate a point Q on the curve by multiplying p with the generator point 𝑸 = 𝒑 ∙ 𝑮.

This point Q is their public key.

Alice now has a (private, public) key pair (pa, Qa) and Bob has (pb, Qb).

The public keys of both parties must be known to each other.

Now Alice calculates 𝒅𝒂 ∙ 𝑸𝒃 and Bob calculates 𝒅𝒃 ∙ 𝑸𝒂. Both getting the same result because:

𝒅𝒂 ∙ 𝑸𝒃 = 𝒅𝒂 ∙ 𝒅𝒃 ∙ 𝑮 = 𝒅𝒃 ∙ 𝒅𝒂 ∙ 𝑮 = 𝒅𝒃 ∙ 𝑸𝒂

The calculated point, let’s denote it X, is the shared secret. Nobody can calculate it without the

knowledge of either Alice’s or Bob’s private key. The result is safe because of the unsolvable ECDLP.

From the coordinate of the shared secret point now a key can be generated by a key generating

function, usually a secure hash algorithm. Here the key is made of the lowest 128 bits of the output

of the SHA256 hash method.

𝒔𝒉𝒂𝒓𝒆𝒅𝑲𝒆𝒚 = 𝑺𝑯𝑨𝟐𝟓𝟔(𝑿. 𝒙) 𝑴𝒐𝒅 𝟐𝟏𝟐𝟖

This key is then used for a symmetric-key encryption algorithm like AES.

It is worth to be noted that the exchange of the public keys must use a secure authentication method

(digital signature) to prevent the protocol from man-in-the-middle attacks.

Static versus Ephemeral Keys
The keys that are used from Alice and Bob can be long-time keys also called static keys or short-time

keys called ephemeral keys.

If static keys are used the public keys are often authenticated by means of certificates. This prevents

man-in-the-middle attacks. Short time keys on the other hand provides forward secrecy, thus if one

key is compromised, keys that have been used in the past are still safe. The disadvantage is that the

keys are only valid for one session. Additionally, the exchange of the public ephemeral key must be

secured by an authentication mechanism that is based on a long-time key (digital signatures).

Since forward secrecy is not required (the plain message is constant) this proposal will be based on

the use of static keys. This avoids the additional session management and leads to less changes to

the existing security scheme.

Sketch of the scheme
As the critical and weak part of the existing scheme is the generation and decryption of the ‘User

Permit’ the new scheme will use a safe mechanism to improve this.

The creation of ‘Data Permits’ and the encryption of the data does not need to be changed, though

the format will slightly change.

The encryption key for a data file will be sent from the data server to the data client in an encrypted

form. This is called the DATA_PERMIT. The key for that encryption process is the system key -

SYS_KEY. This key is provided by the data client. The SYS_KEY must be unique for one system several

installations of the same system (e.g. all ECDIS on board of a vessel) may share the same SYS_KEY.

The OEM is responsible that the SYS_KEY is unique and well protected.

The SYS_KEY has the analogy HW_ID in the existing schemes, but the term ‘Hardware Identifier’ is

somehow misleading because it can be used for multiple entities of hardware.

This proposal describes how the SYS_KEY can be transferred from the data client to the data server

in a secure way overcoming the drawbacks of the existing schemes.

The algorithm is:

1. Preparation done by the OEM

a. The OEM creates a valid private key skO for the curve x25519.

b. The OEM creates the corresponding public key pkO by calculating 𝒑𝒌𝑶 = 𝒔𝒌𝑶 ∙ G

where G is the generator of the used elliptic curve.

c. The OEM create a certificate signing request for the public key pkO and send this to

the certificate authority (CA). This may be the scheme administrator or an

organisation to which this task is assigned by the scheme administrator.

d. The CA issues a certificate that contains pkO and is signed with the private key of the

CA. The certificate is sent back to the OEM.

2. Preparation done by the data server (DS)

a. The DS creates a valid private key skS for the curve x25519.

b. The DS creates the corresponding public key pkS by calculating 𝒑𝒌𝑺 = 𝒔𝒌𝑺 ∙ G where

G is the generator of the used elliptic curve.

c. The DS create a certificate signing request for the public key pkS and send this to the

certificate authority (CA). This may be the scheme administrator or an organisation

to which this task is assigned by the scheme administrator.

d. The CA issues a certificate that contains pkS and is signed with the private key of the

CA. The certificate is sent back to the DS. Note, that this certificate is only for the use

with the ECDH key exchange and should not be used for the generation of digital

signatures. For that purpose, a DS needs to have second certificate (and

corresponding private key) for the ECDSA algorithm. This is already described in the

current schemes.

3. The certificates that have been issued by the CA must be rolled out such that:

a. The OEMs get all certificates issued for data servers.

b. The DSs get all certificates issued for OEMs.

4. The technical implementation of the rollout is not described in this proposal but is worth to

be mentioned the rollout should contain a ‘Certificate Revocation List’ (CRL) as well.

5. The data client (DC) generates a user permit which contains the encrypted SYS_KEY.

a. Note that the user permit is no longer unique for a system. For each DS the user

permit will be different but constant.

b. The DC calculates 𝒔𝒉𝒂𝒓𝒆𝒅𝑺𝒆𝒄𝒓𝒆𝒕 = 𝒔𝒌𝑶 ∙ 𝒑𝒌𝑺 and generates a key for the AES

encryption algorithm by:

𝑨𝑬𝑺𝑲𝒆𝒚 = 𝑺𝑯𝑨𝟐𝟓𝟔(𝒔𝒉𝒂𝒓𝒆𝒅𝑺𝒆𝒄𝒓𝒆𝒕. 𝒙) 𝑴𝒐𝒅 𝟐𝟏𝟐𝟖
c. The AESKey is used to create the user permit as described in S-100 Part 15 Ed5.2.

d. The user permit is than used if the DC orders data from a DS.

6. The data server (DS) decrypts the user permit:

a. The DS identifies the OEM by using the M_ID which is part of the user permit and

find the corresponding public key for that OEM pkO.

b. The DS calculates 𝒔𝒉𝒂𝒓𝒆𝒅𝑺𝒆𝒄𝒓𝒆𝒕 = 𝒔𝒌𝑺 ∙ 𝒑𝒌𝑶 and generates a key for the AES

encryption algorithm by:

𝑨𝑬𝑺𝑲𝒆𝒚 = 𝑺𝑯𝑨𝟐𝟓𝟔(𝒔𝒉𝒂𝒓𝒆𝒅𝑺𝒆𝒄𝒓𝒆𝒕. 𝒙) 𝑴𝒐𝒅 𝟐𝟏𝟐𝟖

c. The AESKey is used to decrypt the user permit to obtain the SYS_KEY

d. The SYS_KEY is then used to generate the data permits exactly as described in the

current schema.

Impact on S-100 Part 15
Though the proposed change only affects how the SYS_KEY (formerly known as HW_ID) is

transported from the data client to the data server, there are several changes in the Part 15 of S-100.

The most important are:

 Remove M_KEY completely from the scheme. (M_ID will be kept)

 Change the description of the user permit. This includes the algorithm how the user permit

is created and can be decrypted. Note that a user permit still can be used to identify a

system but for each data server the user permit will be different. In order to identify for

which DS the user permit has been created a data server identifier (DS_ID) should be

appended to the user permit. This would made the user permit also distinguishable from

user permits of the existing scheme.

 OEMs and DSs need to create key-pairs for the Elliptic Curve Diffie-Hellman ECDH algorithm.

 OEMs and DSs need to create Certificates Signing Requests.

 The scheme administrator or a certificate authority (CA) that is assigned by the scheme

administrator needs to sign (issue) ECDH certificates for both OEMs and DSs

A working example
The following section contains a working example of the creation and use of the user permit.

The OEM creates a key pair for curve x25519:

The private key is the byte string (little-endian encoded number):

sko =

{60, B9, A4, 75, 08, 0E, 99, FF, 5F, AD, 40, F1, 5B, B0, F9, DE,

 18, 0B, CD, B6, D8, BD, 40, A1, 13, F4, 0B, D2, 28, 3F, 2B, 5E}

The public key is the byte string (little-endian encoded number):

pkO =

{7F, 3A, 72, FF, 82, 4E, A0, 43, D5, 09, 06, 78, 6C, 29, F3, C4,
 36, EC, 8B, 9C, 44, 20, 02, 99, D2, 38, E8, EA, 77, C8, 86, 38}

The data server also creates a key pair:

Private key:

skS =

{28, EE, 6A, 5A, 82, 8B, AF, 9D, 53, FE, 50, FF, C5, 56, A4, D2,

 9C, 98, 2A, CC, 0D, 06, FF, CF, C9, 05, 49, 95, D2, 13, C6, 6A}

Public key:

-----BEGIN PUBLIC KEY-----

MCowBQYDK2VuAyEAfzpy/4JOoEPVCQZ4bCnzxDbsi5xEIAKZ0jjo6nfIhjg=

-----END PUBLIC KEY-----

SEQUENCE (2 elem)

 SEQUENCE (1 elem)

 OBJECT IDENTIFIER 1.3.101.110 curveX25519 (ECDH 25519 key agreement algorithm)

 BIT STRING (256 bit)

0111111100111010011100101111111110000010010011101010000001000011110101…

-----BEGIN PRIVATE KEY-----

MC4CAQAwBQYDK2VuBCIEIGC5pHUIDpn/X61A8Vuw+d4YC8222L1AoRP0C9IoPyte

-----END PRIVATE KEY-----

SEQUENCE (3 elem)

 INTEGER 0

 SEQUENCE (1 elem)

 OBJECT IDENTIFIER 1.3.101.110 curveX25519 (ECDH 25519 key agreement algorithm)

 OCTET STRING (34 byte) 042060B9A475080E99FF5FAD40F15BB0F9DE180BCDB6D8BD40A113F40BD2283F2B5E

 OCTET STRING (32 byte) 60B9A475080E99FF5FAD40F15BB0F9DE180BCDB6D8BD40A113F40BD2283F2B5E

Figure 1 OEMs private key as PEM and ASN1 dump

Figure 2 OEMs public key PEM and ASN1 dump

-----BEGIN PRIVATE KEY-----

MC4CAQAwBQYDK2VuBCIEICjualqCi6+dU/5Q/8VWpNKcmCrMDQb/z8kFSZXSE8Zq

-----END PRIVATE KEY-----

pkS =
{44, 25, 5D, 60, 06, 3C, 46, 4A, 9D, 19, EB, 40, 59, 08, 9C, CD,

 E4, 39, F8, 3A, 83, 69, 8A, A1, A4, 3C, D0, 34, ED, 28, 80, 78}

The public keys pkO is known to the DS and the pkS is known to the DC. Both keys are available as

certificates issued by the scheme administrator. The details are left out here for the sake of simplicity.

Commands how to create certificate signing request and for issuing certificates will be described

later.

The DC checks the validity of the data servers’ certificate and obtains the public key pkS from it. Then

the shared secret will be calculated.

sharedSecret = 𝒔𝒌𝑶 ∙ 𝒑𝒌𝑺 =

{DD, 39, 53, F2, CF, AB, BA, D8, BE, 45, 53, 0C, 7D, 78, E6, 05,

 32, E1, 68, 6B, DB, E1, 42, E1, 4B, 5F, 2B, CD, 58, 86, C9, 64}

The output of the SHA256 hash method is:

SHA256(sharedSecret) =

{29, C5, C7, 0A, 85, 22, D6, 2E, 2D, BC, 95, 7F, 4E, 9F, D1, 9A,

 BB, BF, 74, DA, 4E, 10, CA, CB, 81, 18, 00, 76, E1, 98, 52, 12}

The key for the encryption of the SYS_KEY are the 128 lower bits of the hash output.

AESKey = SHA256(sharedSecret) Mod 128 =

{BB, BF, 74, DA, 4E, 10, CA, CB, 81, 18, 00, 76, E1, 98, 52, 12}

We assume that the SYS_KEY is:

SYS_KEY =

{40, 38, 4B, 45, B5, 45, 96, 20, 11, 14, FE, 99, 04, 22, 01, 01}

The encrypted SYS_KEY’ will be (using AES to encrypt the SYS_KEY):

SYS_KEY’ = AES(SYS_KEY) =

{AF, B9, AA, 9A, C4, 81, DC, A8, 12, 3A, 73, 0F, 3F, D6, D7, 8F}

Assuming the M_ID is:

M_ID = “859868”

The user permit will be: AFB9AA9AC481DCA8123A730F3FD6D78F6AA0DE5E859868

Note, that this is the old format a data server identifier should be added to the user permit.

e.g. when DS_IS = “XY”

----- SYS_KEY (encrypted) -------- CRC --M_ID-DS_ID

AFB9AA9AC481DCA8123A730F3FD6D78F6AA0DE5E859868XY

The data server identifies the OEM from the M_ID and get the public key of the OEM: pkO.

-----BEGIN PUBLIC KEY-----

MCowBQYDK2VuAyEARCVdYAY8RkqdGetAWQiczeQ5+DqDaYqhpDzQNO0ogHg=

-----END PUBLIC KEY-----

Note that the public key is available in a certificate and the validity of the certificate must be checked

before the public key can be used.

Then the DS calculates the shared secret:

sharedSecret = 𝒔𝒌𝑺 ∙ 𝒑𝒌𝑶 =

{DD, 39, 53, F2, CF, AB, BA, D8, BE, 45, 53, 0C, 7D, 78, E6, 05,

 32, E1, 68, 6B, DB, E1, 42, E1, 4B, 5F, 2B, CD, 58, 86, C9, 64}

And derives the same AESKey as above. With this key the DS can decrypt the user permit and as the

result gets the SYS_KEY.

Certificate creation with openssl
The following commands can be used to create the key material and the certificates by using the

program openssl. It has been tested with version 3.0.

It is worth to be mentioned that openssl does not allow to create a certificate signing request (CSR)

for an x25519 key. The reason is that the CSR is self-signed and therefore the key must be valid for

digital signatures. To solve this problem, the signing request must be created for another ‘dummy’

key that is valid for digital signatures. When the certificate is issued the issuer can replace the

dummy key with the x25519 key. This is a limitation of the openssl command line tool, other software

may support the requested functionality without the ‘hack’. Nevertheless, the commands will create

valid certificates for the use in EcDH key exchange.

Note that the certificate authority (CA) in this example is the scheme administrator. It is possible that

the scheme administrator delegates the task to another organisation. In this case the CA does not

have a self-signed certificate but one that is in a chain of certificates with the self-signed root

certificate at the top of that list.

Either the OEM or the data server will:

Task Command

Create a private key for
the curve x25519

openssl genpkey -algorithm x25519 -out x25519_priv_key.pem

Create a corresponding
public key

openssl pkey -in x25519_priv_key.pem -pubout -out
x25519_pub_key.pem

Create a dummy key openssl ecparam -name secp256r1 -genkey -out dummy_key.pem

Create a certificate
signing request

openssl req -new -key dummy_key.pem -out signed.csr

The certificate signing request and the x25519 public key are sent to the scheme administrator.

The CA issues the certificate:

Task Command

Issue the certificate and
replace the dummy key
with the x25519 key

openssl x509 -req -in signed.csr -CAkey sa-priv.pem -CA sa.crt
 -force_pubkey x25519-pub_key.pem -days 365 -out x25519.crt

Note: The file sa-priv.pem contains the private key for of the scheme administrator and the file sa.crt is the self-signed

certificate of the scheme administrator.

The certificate is then sent back to the requester and/or will be published. The certificate should also

be stored in the scheme administrator’s database.

The OEM or the data server can now validate their certificate. This operation is required before any

information can be used that is stored in the certificate. This includes the public key.

Task Command

Validate the certificate
against the CAs self-
signed certificate

openssl verify -verbose -CAfile sa.crt x25519.crt

It is possible to store the M_ID or the DS_ID in the certificate in one field of the Distinguished Name

(DN). If this is requested the actual fields must be specified in the standard.

