

Nautical Chart Working Group (NCWG) 10 Baseline Symbology Project Team (BSPT)

Work Progress and Update Monaco November 2024

Baseline Symbology Project Team Goals

Mandate:

Establish a common IHO symbology, based on S-4, which can be used to support the automated creation of paper chart products directly from S-101 data. A common symbology library will help hydrographic offices, private industry, developers and others, to view ENC data and facilitate direct creation of ENC derived products more efficiently and quickly.

Key objectives:

- a) Development of a symbol library comprising a common set of symbols (in SVG format) and related portrayal rules. This will support efforts toward the automated or semi-automated creation of paper charts.
- b) Submit the SVG baseline symbol library, based on S-4, compatible to the requirements of the IHO Geospatial Information Registry as defined in S-100 Part 9, Appendix 9-

IHO

Background

International Hydrographic Organization

NCWG 5

- Disscussed issues pertaining to the automated production of paper charts directly from ENCs.
- Need for a common IHO baseline for symbology (rule based) agreed.
- Recommendation to HSSC to add work item to NCWG Work Plan.

HSSC 12

- Report on the Future of the Paper Nautical Chart presented and recommendation made to add new work task.
- The FOPNC report discusses the background behind the recommended action in greater detail.
- Resulted in Action HSSC12/36: HSSC tasked the NCWG to add a work item in its work plan to develop ways to
 enable or enhance HOs' ability to produce paper charts or raster chart images directly from S-101. [The goal is to
 create a 'Common IHO Baseline Symbology' including basic symbol sets and rules.]
- New Work item Added to NCWG Work Plan:

E11	Develop baseline symbology to	Н	NCWG6 - discus and	2020	Р	INT1, S-4	New proposal by NCWG at HSSC12
	support automated chart production		agree work tasks				

NCWG 6

- The group discussed the issue and how best to approach the task.
- Decided to establish a seperate project team to look further at the issue and develop a mandate.

Action 6/1 – Members interested in joining baseline symbology VTC meeting should contact the contact chair, then subsequently arrange a meeting date and develop a mandate.

BSPT Team Structure

Key team members

- Daniel Brousseau (CHS)
- Christie Ence and Colby Harmon (NOAA)
- Samantha Lerigo and Nick (UKHO)
- Mikko Hovi (Finnish Transport and Communications Agency Traficom)
- Patricia Sheastley (ESRI)
- Peter Schwarberg and Julien Barbeau (Teledyne CARIS)
- Other members were invited in 2023-2024

International Hydrographic Organization

Colour Table Overview: Circular letter 05/2024

International Hydrographic Organization

Hydrographique Internationale

4b quai Antoine 1er B.P. 445 MC 98011 MONACO CEDEX PRINCIPALITY OF MONACO

Tel: +377 93 10 81 00 Fax: +377 93 10 81 40 Email: info@iho.int Web: www.iho.int

NAUTICAL CARTOGRAPHY WORKING GROUP

Chair: Mikko Hovi

Finnish Transport and Communications Agency

Traficom

Tel: +358 29 534 6730 Email: mikko.hovi@traficom.fi Secretary: Patricia Sheatsley **ESRI**

Tel: +1 909 369 5048 Email: psheatsley@esri.com

NCWG Letter 05/2024

To NCWG Members

23 April 2024

NCWG Base Symbology Project Team recommendation of Standard Colours for the automated creation of ENC derived paper charts

Dear Colleagues,

This letter presents the NCWG's Baseline Symbology Project Team (BSPT) recommendations for baseline colours to be used for the automated creation of ENC derived paper charts. Feedback on the recommended colours is requested.

Please reply, using the response form at Annex B, no later than 17 June 2024. I ask you to use the 'Reply to all' option for responses, to ensure the full Working Group membership is aware of developing discussions.

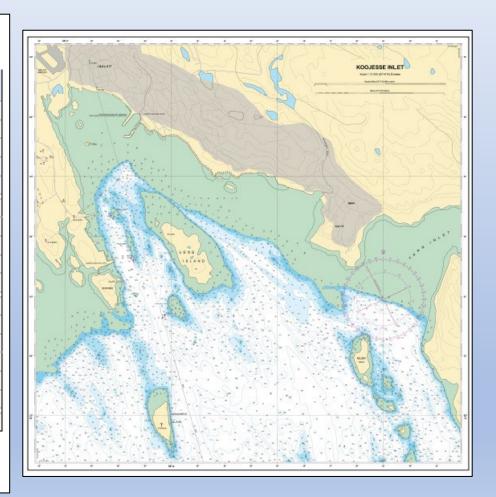
Yours sincerely,

Mikko Hovi Chair NCWG

Recommended colours for use in the SVG symbols

International Hydrographic Organization

Annex A - BSPT Recommended Baseline Chart Colours


P rima ry Use	Nam e	Canada	Finland	New Zealand	United Kingdom	US (NOAA)	Average	Average Red	Average Green	Average Blue	No.in Average
Coastline	Black							0	0	0	5
Land	Buff							251	240	198	5
Land infrastructure	Grey				х			195	194	186	4
Topography	Brown		х		х			119	86	42	3
Urban areas	Light Grey							215	209	195	5
Intertidal	Intertidal Green		х					193	222	199	4
Depth contours	Contour Blue							23	136	186	5
Shallow depth area	Dark Blue							133	207	235	5
Medium depth area	Medium Blue		х	х	х			177	225	244	•
Deeper depth area	Light Blue							221	242	253	5
Compass rose and aids	Nautical Purple							156	59	142	5
Traffic separation	Light Purple							229	158	233	5
Red aids	Red			х				237	28	36	**
Orange aids	Orange			х	х	х		247	148	62	**
Yellow aids	Yellow			х		х		255	218	0	**
Green aids and areas	Green			Х				0	176	133	**
White aids and other	White							255	255	255	5

- X Hydrographic office does not use or did not provide a sample of this colour.

 * Medium blue is the average of the average dark blue and average light blue RGB values.

 ** Canadian RGB values for red, orange, yellow, and green were adopted rather than the average colours.

International Hydrographic Organization

Colour Table Approval and token

NCWG Baseline Symbology Project Team ENC Derived Paper Chart Colour Palette August 14, 2024

Primary Use	Token	Name	Sample	Red	Green	Blue
Coastline	PPRBLK	Black		0	0	0
Land	PPRLND PPRBUF	Buff		251	240	198
Land infrastructure	PDKGRY	Grey		195	194	186
Topography	PBROWN	Brown		119	86	42
Urban areas	PLTGRY	Light Grey		215	209	195
Intertidal	PINTTD PLTGRN	Intertidal Green		193	222	199
Depth contours	PCONTR PRCBLU*	Contour Blue		23	136	186
Shallowest depth area(s)	PDKBLU	Dark Blue		133	207	235
2 nd Shallowest depth area(s)	PMDBLU	Medium Blue		177	225	244
3 rd Shallowest depth area(s)	PLTBLU	Light Blue		221	242	253
Deeper depth areas	PWHITE	White		255	255	255
Compass rose and aids	PDKPRP	Nautical Purple		156	59	142
Traffic separation	PLTPRP	Light Purple		229	158	233
Red aids	PPRRED	Red		237	28	36
Orange aids	PORANG	Orange		247	148	62
Yellow aids	PYELLO	Yellow		255	218	0
Green aids and areas	PGREEN PDKGRN	Green		0	176	133

International Hydrographic Organization

SVG Creation Process (research and ideation)

Using the INT1 publication in conjunction with the S4 Standard to review and assess symbols, lines and areas to be created in SVG format NOAA publication example

BSPT No.	INT Ltr	INT No.	INT Symbol	INT Description	ENC Symbol	ENC Description		
	E	25.2	¥ Ru	Windmill (without sails)	× ∜	Windmill, status of ruins is obtained by cursor pick		
	E	26.1	t t	Wind turbine, Windmotor	1	Wind motor		
	E	26.2	(f) (f)	Onshore wind farm		Wind generator farm		
	E	27	₽ FS	Flagstaff, Flagpole	1	Flagstaff, Flagpole		
	E	28	ï	Radio mast, Television mast	1	Mast		
	E	29	°Ľ*	Radio tower, Television tower	Ţ	Radio, television tower		
	E	30.1	○ Radar Mast And Rad	Radar mast	1	Mast		
	E	30.2	⊚ Radar Tr ∯n Rad	Radar tower	1	Radar tower		
	E	30.3	⊚ Radar Sc	Radar scanner	耳	Radar scanner		
	E	30.4	⊚ Radome	Radome	Q	Radome		
	E	31	2	Dish aerial	\$	Dish aerial		
	E 32			Ks Tanks	Tank			

Design review and feedback

International Hydrographic Organization

Symbol library for conversion to SVG format

UKHO provided the base symbol, line and areas library and dictionary for the BSPT to use

CHS, contracted Teledyne CARIS to build a converter inside the HPD Process Designer for points.

Teledyne CARIS, converted the UKHO symbol library to SVG format

C E10_1_CHURCH.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E11_CHAPEL.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E13_TEMP_OBS.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E13_TEMPLE.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E14_PAGODA.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E15_SHINTO.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E16_B_T_OBS.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E16_BUD_TEMP.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E17_MOSQUE.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E18_MARABOUT.svg	15/11/22 11:17 AM	Microsoft Edge HTM	4 KB
C E19_CEMETERY_S0_E19_CEMETRYA.svg	15/11/22 11:17 AM	Microsoft Edge HTM	1 KB
© E20_TOWER.svg	15/11/22 11:17 AM	Microsoft Edge HTM	3 KB
C E21_WA_TR.svg	15/11/22 11:17 AM	Microsoft Edge HTM	3 KB
C E22_CHY.svg	15/11/22 11:17 AM	Microsoft Edge HTM	3 KB
C E23_FL_STK.svg	15/11/22 11:17 AM	Microsoft Edge HTM	3 KB
C E24_MON.svg	15/11/22 11:17 AM	Microsoft Edge HTM	3 KB
© E25_WINDMIL.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E26_TURBINE.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
C E26_WIND_F_S0_E26_WIND_FA.svg	15/11/22 11:17 AM	Microsoft Edge HTM	2 KB
© E26_WINDMOT.svg	15/11/22 11:17 AM	Microsoft Edge HTM	3 KB
€ E27 FLAG S0 FLAG BOT.sva	15/11/22 11:17 AM	Microsoft Edae HTM	2 KB

SVG Creation Process (initial design draft)

- Contract to convert lines and areas to SVG (S-100 standards).
 More complex than anticipated
- Contract to also complete the templates
- IIC was the winning bidder
- Canadian Hydrographic Service funded the contracts thru OPP2
- CHS sees two benefits:
 - IHO to have the SVG library of S4/INT1 features
 - CHS: will help create the "paper charts of the future", i.e. paper Chart 2.0 or other paper chart creation process.

SVG Creation Process (initial design draft)

- April to June (hopeful)
- Analyse the contract results (confirm symbols and templates)
- Creation of display rules

Current Status of SVG Creation

- Progress updates on SVG designs
- •Number of symbols created and examples (???)
- •Requirement to integrate the approved color palette into template and SVGs

Geo	S-101 Feature	S-101 Encoding	S-101 DP	S-101 Symbol	S-101 Symbol	S-57 Feature	S-57 Encoding	S-4	INT1 Symbol	S-57 DP	BSPT Symbol	BSPT Symbol	BSPT Label	Case	Font	Font Style	Text Size	Te co
А	SubmarinePipeli neArea	categoryOfPipeline Pipe=6	9	PIPARE51	~~~~~	PIPARE	CATPIP = 6	443.2	L40.2	3	EMPIP AR1M	→ → → → → → → → → →	n/a					
А	SubmarinePipeli neArea	categoryOfPipeline Pipe=2 or categoryOfPipeline Pipe=3	9	PIPARE61	v v v -> v v	PIPARE	<u>CATPUP</u> = 2, 3, 4, 5	443.2	L41.2		EMPIP AR2M		n/a					
А	SubmarinePipeli neArea	categoryOfPipeline Pipe=4 and product=3		PIPARE61	~~~~~	PIPARE	CATPIP=4 PRODUCT=3	443.2	L41.2		EMPIP AR2M		Sewer					
А	SubmarinePipeli neArea	categoryOfPipeline Pipe=3 and product=3		PIPARE61	~~~~~	PIPARE	CATPIP=3 PRODUCT=3	443.2	L41.2		EMPIP AR2M	FTTTT TTTTTTTT http:	Intake					
А	SubmarinePipeli neArea	categoryOfPipeline Pipe=2 and product=3		PIPARE61	\vee \vee \vee \vee \vee \vee	PIPARE	CATPIP=2 PRODUCT=3	443.2	L41.2		EMPIP AR2M	CONN.	Outfall					
А	SubmarinePipeli neArea	categoryOfPipeline Pipe=6 and product=1		PIPARE51	∨ ∨ ∨ ⊸ ∨ ∨ ∨	PIPARE	CATPIP=6 PRODUCT=1	443.2	L40.2		EMPIP AR1M	grr rrrrrrrrrr	Oil					
A	SubmarinePipeli neArea	categoryOfPipeline Pipe=6 and product=2		PIPARE51	~ ~ ~ ~ ~ ~ ~ ~	PIPARE	CATPIP=6 PRODUCT=2	443.2	L40.2		EMPIP AR1M	Gos	Gas					
А	SubmarinePipeli neArea	categoryOfPipeline Pipe=6 and product=3		PIPARE51	~ ~ ~ ~ ~ ~ ~	PIPARE	CATPIP=6 PRODUCT=3	443.2	L40.2		EMPIP AR1M	PTTTT Webr	Water					
А	SubmarinePipeli neArea	categoryOfPipeline Pipe=6 and product=7		PIPARE51	V V V -0 V V V	PIPARE	CATPIP=6 PRODUCT=7	443.2	L40.2		EMPIP AR1M	Chem	Chem					

Examples: Wrecks

International Hydrographic Organization Wrecks 24 June 2024

Geo	S-101 Feature	S-101 Encoding	S-101 DP	S-101 Symbol	S-57 Feature	S-57 Encoding	S-4	INT1 Symbol	S-57 DP	BSPT Symbol	BSPT Symbol	BSPT Label	Case	Font	Font Style	Text Size	Text color
А	Wreck, hull never covers, on large scale charts, height above height datum	categoryOfWreck: 5 = Wreck Showing Any Portion of Hull or Superstructure waterLevelEffect: 2 = Always Dry	12	\bigcirc	WRECKS	CATWRK: 5 = Wreck Showing Any Portion of Hull or Superstructure WATLEV: 2 = Always Dry	422.1	К 20	4	TBD	Wx	Wk			blkitali s	9	СНВЬК
А	Wreck, covers and uncovers, on large scale charts, height above chart datum	categoryOfWreck: 5 = Wreck Showing Any Portion of Hull or Superstructure waterLevelEffect:: 4 = Covers and Uncovers valueOfSounding= 5.2	12		WRECKS	CATWRK: 5 = Wreck Showing Any Portion of Hull or Superstructure WATLEV: 4 = Covers and Uncovers:	422.1	K 21	4		WK S ₁ WK	Wk			blkitali s	9	CHBLK
А	Submerged wreck, depth known, on large scale charts	categoryOfWreck: 5 = Wreck Showing Any Portion of Hull or Superstructure waterLevelEffect: 3 = Always Under Water/Submerged	12	•	WRECKS	CATWRK: 5 = Wreck Showing Any Portion of Hull or Superstructure WATLEV: 3 = Always Under Water/Submerged	422.1	К 22	4		55 Wx Wx	Wk			bikitali s	9	CHBLK
P	Wreck showing any portion of hull or superstructure at level of chart datum	categoryOfWreck: 4 = Wreck Showing Mast/Masts categoryOfWreck: 5 = Wreck Showing Any Portion of Hull or Superstructure 2 = Allways Dry waterLevelEffect: 4 = Covers and Uncovers	12	8	WRECKS	CATWRK: 4 = Wreck Showing Mast/Masts CATWRK: 5 = Wreck Showing Any Portion of Hull or Superstructure WATLEV: 2 = Always Dry WATLEV:: 4 = Covers and Uncovers	422.2	K 24	4	KZ4STWK	4						
Р	Wreck, least depth known by sounding only	categoryOfWreck: 2 = Dangerous Wreck waterLevelEffect:: 5 = Awash	12	46	WRECKS	CATWRK: 2 = Dangerous Wreck WATLEV:: 5 = Awash	422.4	К 26	4	DANGER02	46 . Wk	Wk			blkitali s	9	СНВЬК
Р	Dangerous wreck, depth unknown	categoryOfWreck: 2 = Dangerous Wreck waterLevelEffect:: 3 = Always Under Water/Submerged	12	8	WRECKS	CATWRK: 2 = Dangerous Wreck WATLEV:: 3 = Always Under Water/Submerged	422.6	K 28	4	WRECK\$05	∰: Masts	Masts			blkitali s	9	СНВІК

Hydrographic Organization

Examples: Offshore production and Dumping Ground

þffsh	Offshore Production Area 30 May 2024																	
Geo	S-101 Feature	S-101 Encoding	S-101 DP	S-101 Symbol	S-101 Symbol	S-57 Feature	S-57 Encoding	S-4	INT1 Symbol	S-57 DP	BSPT Symbol	BSPT Symbol	BSPT Label	Case	Font	Font Style	Text Size	Text color
А	OffshoreProducti onArea	categoryOfOffshor eProductionArea= 1	12	CTYARE51		OSPARE	CALEBA=9	445.9	L5.2.1	3	IL52WI NDF	(F)	n/a					
А	OffshoreProducti onArea	categoryOfOffshor eProductionArea= 1 and restriction=8	12	CTVARE51		OSPARE	CALEBA-9 RESIRN-8	445.9	L5.2.2		IL522 WINDR ES RESAR E51	+ + + + + + + + + + + + + + + + + + +	n/a					
А	OffshoreProducti onArea	categoryOfOffshor eProductionArea= 2	12	CTYARE51		OSPARE		445.1 2	L6.1		IL6WA VEFAR M	· · · · · · · · · · · · · · · · · · ·	n/a					
А	OffshoreProducti onArea	categoryOfOffshor eProductionArea= 2 and restriction=8	12	CTVARE51		OSPARE	RESTRN=8	445.1 2	L6.2		IL61W AVEFA RMRES RESAR E51	•	n/a					
А	OffshoreProducti onArea	categoryOfOffshor eProductionArea= 1 waterLevelEffect=7	12	CTYARE51		OSPARE	CATPRA=9 WATLEV=7	445.9	L5.2.2	3	JU522 WINDF LOAT RESAR E51	() () () () () () () () () ()	n/a					

bum	ping Ground	31	1 Marc	h 2024														
Geo	S-101 Feature	S-101 Encoding	S-101 DP	S-101 Symbol	S-101 Symbol	S-57 Feature	S-57 Encoding	S-4	INT1 Symbol	S-57 DP	BSPT Symbol	BSPT Symbol	BSPT Label	Case	Font	Font Style	Text Size	Text color
А	DumpingGround	categoryOfDumpin gGround =4 (Explosives Dumping Ground)	9)	DMPGRD	CATDEG= 4	442.2	N23.1a		TBD	T T T T T T T T T T T T T T T T T T T	Explosive Dumping Ground	Sent ence case	serif s	megen ta	10	CHMGD
А	DumpingGround	categoryOfDumpin gGround =4 (Explosives Dumping Ground) status =4 (Not in Use)	9		<u>)</u>	DMPGRD	CAIDEG= 4 STATUS=4	443.2	N23.2			PTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Explosive Dumping Ground (disused)	Sent ence case	serif s	megen ta	10	CHMGD
А	DumpingGround	categoryOfDumpin gGround =5 (Spoil Ground)	9		1	DMPGRD	CATDRG= 5	443.2	N62.1				Spoil Ground	Sent ence case	serif s	megen ta	10	CHMGD
А	DumpingGround	categoryOfDumpin gGround =5 (Spoil Ground) status =4 (Not in Use)	9			DMPGRD	CATDEG= 5 STATUS=4	443.2	N62.2			Spoil Grawel of invocity	Spoil Ground (discussed)	Sent ence case	serif s	megen ta	10	CHMGD
А	DumpingGround	categoryOfDumpin gGround =2 (Chemical Waste Dumping Ground)	9		1	DMPGRD	CATDPG= 2	442.2	N24			PT T T T T T T T T T T T T T T T T T T	Dumping Ground for Chemicals	Sent ence case	serif s	megen ta	10	CHMGD
Р	DumpingGround	categoryOfDumpin gGround =5 (Spoil Ground)	9	CHINFO07	i	DMPGRD	CATDPG= 4	442.3	N23.1b		N23EXDG1	€)						

Challenges and Solutions

International Hydrographic Organization

- Overview of challenges faced during color selection and SVG creation
 Strategies implemented to overcome these challenges
- SVG Format of SVG
 - LUA (ECDIS and some data producers)
 - Other (data producers)
- 60% produced
- How to complete the rest
 - Contracts, HO capability, others
 - CHS might have some funds
- How to approach the review
 - Test Bed required

Quality assurance

April to June (hopeful)

- Analyse the contract results (confirm symbols and templates)
- Creation of display rules
- •Testing SVG files for:
 - Cross-platform compatibility
 - Rendering accuracy and usability
- Adjustments made based on testing outcome

Next steps

Some results by end of March 2025

- Requirement for a new contract or partners to complete the conversation
- Review of the templates created during the 2024 contract
- Completion of the Creation of SVG lines and areas
- Review of the .SVG's and creation of display rules and in-depth analysis

Summer to fall 2025:

Submission of SVG features and rules to NCWG and IHO Geospatial registry

Organization

Baseline Symbology project Team:

Contact information:

Christie Ence, NOAA, christie.ence@noaa.gov

Samantha Lerigo, UKHO, Samantha.lerigo@ukho.gov.uk

Mikko Hovi, Finland HO, Mikko.Hovi@traficom.fi

Nick Rodwell, UKHO, Nick.Rodwell@UKHO.gov.uk

Patricia Sheatsley, ESRI, PSheatsley@esri.com

Julien Barbeau, Teledyne CARIS, Julien.barbeau@teledyne.com

Daniel Brousseau, CHS, <u>Daniel.Brousseau@dfo-mpo.gc.ca</u>

Thank You