[Insert Title & Copyright page]

[Insert version control page]

**** Note I have used entity through the document to indicate "point" specific data. According to S100 feature catalogue can use GM_Point or pointsets (a set of GM_Point). The main difference is a wether we want each tidal height locations to have its own file or have all the tidal height locations as a single file (single point feature or irregular points features).

Pointsets are considered a type of coverage.

This document assumes gone with GM_Point

[S100 Table A.21 and Section 8]***

1. Background

The development of electronic navigation with high resolution bathymetric data, and the drive to increase mariners' safety are now demanding temporal data such as tidal heights to be available.

The Tidal Height Single Point Product describes the provision of tidal height data as single entity *irrespective of whether they are observations, model derived predictions.*

2. Introduction

This document describes an S-100 compliant product specification for Tidal Height Single Point Product.

The Tidal Height Single Point Product may be used alone or it may be combined with ENC or other S-100 compatible data. As such this Tidal Height Single Point Product specification describes one of a number of additional information that could be integrated with other S-100 products for use with ENC.

The Tidal Height Single Point Product specification defines a content model and an exchange file format for the exchange of tidal height *entity* data. There currently are no recognized standards on the exchange of tidal height single point data.

3. Scope

This document is a product specification for tidal height data which may be used alone r as an auxiliary layer of data with an ENC. It specifies *an entity* including

both height and uncertainty. This product specification includes a content model and separate encodings.

4. Conformance

This product schema is conformant with IHO S-100 Sections?

5. Normative references

- 5.1. IHO S.100 IHO Universal Hydrographic Data Model, January 2010
- 5.2. IHO S.44 Standards for Hydrographic Surveys 5th Edition, February 2008
- 5.3. ISO 8601:2004 Data elements and interchange formats _ Information interchange _ Representation of dates and times ISO/TS 19103:2005 Geographic information Conceptual schema language
- 5.4. ISO 19111:2003 Geographic information Spatial referencing by coordinates
- 5.5. ISO 19115:2003 Geographic information Metadata
- 5.6. ISO 19115-2:2009 Geographic information Metadata: Extensions for imagery and gridded data
- 5.7. ISO 19123:2005 Geographic information Schema for coverage geometry and functions
- 5.8. ISO 19129:2009 Geographic information Imagery gridded and coverage data framework
- 5.9. ISO 19131:2007 Geographic information Data product specifications
- 5.10. ISO/IEC 19501:2005, Information technology Open Distributed Processing – Unified Modelling Language Version 1.4.2

Note: a summary of UML is given in S.100 Part 1.

6. Use of Language (Optional)

Within this document:

- "Must" indicates a mandatory requirement.
- "Should" indicates an optional requirement, that is the recommended process to be followed, but is not mandatory.

- "May" means "allowed to" or "could possibly", and is not mandatory.
- 7. Terms and Definitions

Terms and definitions have been taken from the normative references cited in clause 3. Only those which are specific to this document have been included and modified where necessary. Additional terms are defined in this document.

7.1. coordinate

one of a sequence of numbers designating the position of a point in Ndimensional space [ISO 19111]

7.2. coordinate reference system

coordinate system which is related to the real world by a datum [ISO 19111]

7.3. direct position

position described by a single set of coordinates within a coordinate reference system [ISO 19107]

7.4. domain

```
well-defined set [ISO 19103]
```

NOTE Domains are used to define the domain set and range set of operators and functions.

7.5. elevation

the altitude of the ground level of an object, measured from a specified vertical datum. [IHO S100 GFM]

7.6. feature

abstraction of real world phenomena [ISO 19101]

NOTE a feature may occur as a type or an instance. Feature type or feature instance should be used when only one is meant.

7.7. height

distance of a point from a chosen reference surface measured upward along a line perpendicular to that surface. [ISO 19111:2006]

NOTE Height is distinguished from elevation in that is a directional measurement.

7.8. Record

Finite, named collection of related items (objects or values) [ISO 19107]

NOTE Logically, a record is a set of pairs <name,item>

7.9. uncertainty

The interval (about a given value) that will contain the true value of the measurement at a specific confidence level [IHO S44]

NOTE Errors exists and are the differences between the measured value and the true value. Since the true value is never known it follows that the error itself cannot be known. Uncertainty is a statistical assessment of the likely magnitude of this error.

- 8. Symbols and abbreviations terms
 - 8.1. Abbreviations
 - CRS Coordinate Reference System
 - ECDIS Electronic Chart Display Information System
 - EPSG European Petroleum Survey Group
 - ENC Electronic Navigational Chart
 - IHO International Hydrographic Organization
 - IMO International Maritime Organization
 - ISO International Organization for Standardization
 - 8.2. Notation

In this document conceptual schemas are presented in the Unified Modelling Language (UML). Several model elements used in this schema are defined in ISO standards developed by ISO TC 211, or in IHO S-100. In order to ensure that class names in the model are unique ISO TC/211 has adopted a convention of establishing a prefix to the names of classes that define the TC/211 defined UML package in which the UML class is defined. Since the IHO standards and this product specification make use of classes derived directly from the ISO standards this convention is also followed here. In the IHO standards the class names are identified by the name of the standard, such as "S100" as the prefix optionally followed by the bialpha prefix derived from ISO. For the classes defined in this product specification the prefix is *"S10n"*. In order to avoid having multiple classes instantiating the same root classes, the ISO classes and S-100 classes have been used where possible; however, a new instantiated class is required if there is a need to alter a class

or relationship to prevent a reverse coupling between the model elements introduced in this document and those defined in S-100 or the ISO model.

Prefix	Standard	Package
CI	ISO 19115	Citation and Responsible Party
CV	ISO 19123	Coverage Core & Discrete Coverages
DQ	ISO 19115	Data Quality Information
DS	ISO 19115	Metadata Application Information
EX	ISO 19115	Metadata Extent information
IF	ISO 19129	Imagery Gridded and Coverage Data Framework
LI	ISO 19115	Linage Information
MD	ISO 19115	Metadata entity set information
MI	ISO 19115-2	Metadata entity set imagery
S100	IHO S-100	IHO Standard for Hydrographic Data
SC	ISO 19111	Spatial Referencing by Coordinates
SD	ISO 19130	Sensor Data
S101	IHO S-101	IHO Electronic Navigational Chart Product Specification
S102	IHO S-102	IHO Bathymetric Surface Product Specification

9. Overview

9.1. Title

S-10n – Tidal Height Single Point Product Specification

9.2. Reference Date

Proposed draft MMM YYYY (date to be revised when finalized)

9.3. Responsible Party

International Hydrographic Bureau. 4 quai Antoine 1er B.P. 445 MC 98011 MONACO CEDEX Telephone: +377 93 10 81 00 Telefax: + 377 93 10 81 40

9.4. Language

Data products conforming to this product specification are available in English and additionally in other national languages together with English. That is, English or

English plus another language or languages shall be used in the metadata associated with the set of values defining the tidal height *entity*.

9.5. Informal description of the data product

- **10.** Specifications Scopes
- 10.1. Scope general
- 10.2. Scope identification
- 10.3. Level
- 10.4. Level name
- 10.5. Spatial extent:

Description: Areas where Tidal Information is available

East Bounding Longitude: 180°

West Bounding Longitude: 180°

North Bounding Longitude: 90°

South Bounding Longitude: -90°

- 10.6. Temporal Extent
- 11. Data product identification
- 11.1. Title: Tidal Height Single Point Product
- 11.2. Alternate Title(optional –e.g. existing industry standard, acronym etc) Example: THSPP- short for tidal height single point product
- **11.3.** Abstract: S-10n THSPP must be produced in accordance with the rules defined in S-10n Product Specification. The S-10n Product specification contains all the information necessary to enable Hydrographic Offices to produce a consistent THSPP, and manufacturers to use that data efficiently in an ECDIS or other Navigational planning tools to satisfy IMO Performance Standards for ECDIS.
- 11.4. Purpose: For use with Electronic Chart Display and Navigational Systems

11.5. Topic category: *Need to determine which best describes* [ISO 19115 B.5.27], options are:

Name	Domain Code	Definition
Elevation	006	Height above or below mean sea level Examples: altitude, bathymetry, digital elevation models, slope, derived products
Inland Waters	012	Inland water features, drainage systems and their characteristics Examples: rivers and glaciers, salt lakes, water utilization plans, dams, currents, floods, water quality, Hydrographic charts
Oceans	014	Features and characteristics of salt water bodies(excluding inland waters) Examples: tides, tidal waves, coastal information, reefs

Given that the group covers inland waters as well as coastal, it maybe that all options are required and leave it to the producing authorities to choose the most appropriate.

11.6. Spatial representation type:

Type of spatial representation for the product, as defined by the ISO 19115 MD_SpatialRepresentationTypeCode [B.5.26]:

Vector, Domain Code 001

11.7. Spatial resolution: *Do we want to define a scale range within which the dataset should be used?*

Table 2 S-101 ENC Minimum Display and Maximum Display Scales

Scale
1:10,000,000
1:3,500,000
1:1,500,000
1:700,000
1:350,000
1:180,000
1:90,000
1:45,000
1:22,000

1:12,000
1:8,000
1:4,000
1:3,000
1:2,000
1:1,000

11.8. Reference to product specification scope

Global

Note: "Global" means that this scope refers to all parts of this data product specification.

12. Data content and structure

12.1. Description

The tidal height product is a single point entity that contains a time series of tidal heights and associated uncertainty relative to a vertical reference datum. It is made up of the following components

Metadata

Time series

- Uncertainty
- 12.2. Entity Information
- 12.2.1. Template Application Schema
- 12.2.2. Application Schema Implementation Classes
- 12.2.3. Implementation Classes Description
- 12.2.3.1. S10n_TidalHeightEntity
- 12.2.3.2. S10n_UncertaintyValues
- 12.2.3.3. DirectPosition
- 12.2.3.3.1. DirectPosition semantics

The class DirectPosition holds the coordinates for a position within some coordinate reference system.

12.2.3.3.2. coordinate

The attribute *coordinate* is a sequence of Numbers that hold the coordinate of this position in the specified reference system.

12.2.3.3.3. dimension

The attribute *dimension* is a derived attribute that describes the length of the coordinate.

12.2.3.4. Vector

12.2.3.4.1. Vector semantics

The class Vector is an ordered set of numbers called coordinates that represent a position in a coordinate system.

12.2.3.4.2. dimension

The attribute *dimension* is a derived attribute that describes the length of the sequence of vector coordinates.

12.2.3.4.3. coordinates

The attribute *coordinates* is a sequence of Numbers that hold the coordinate of this position in the specified reference system.

12.2.3.5. Etc

12.2.4. Digital Signature Block Implementation Class – S-102 have implemented this as part of the S-10n_CollectionMetadata – do we want to do something similar? Is this applicable?

12.2.5. Metadata

The Metadata elements used in the Bathymetric Surface product are derived from S-100 and from ISO 19115 and ISO 19115-2. Optionally additional metadata may be derived from ISO 19130 and ISO 19130-22 especially metadata relating to the SONAR equipment which may have been used to acquire the bathymetric data. There are only a few elements in the ISO 19115 metadata standard that are mandatory and these relate only to the use of the metadata for identification and pedigree of the data set. A minimum level of data identification is required for all applications including database applications, web services and data set production. *However, S10n requires certain metadata attributes which are used to geolocate the dataset as well as lineage attribution which define processes used to establish the tracking list and establish a pedigree for the data.* The elements are related in a metadata schema, and include definitions and extension procedures.

There exist both mandatory and conditional metadata elements. Only a few metadata elements are mandatory but the inclusion of some of the optional metadata elements establish a situation where other metadata elements are conditionally made mandatory. The following table outlines the core metadata elements (mandatory and recommended optional) required for describing a geographic information data set. The codes indicate: "M" mandatory, "O" optional' "C" conditional as defined in ISO 19115. The table indicates how the mandatory and conditional core metadata are handled in S-10n.

Table 3 - ISO TC211 Core Metadata as applied in S-10n Insert table of metadata

12.2.6. Discovery Metadata

12.2.7.

12.2.8. Structure Metadata

12.2.9. Quality Metadata

- 12.2.10. Acquisition Metadata Optional
- 12.2.11. Feature Catalogue
- 12.2.12. Reference to product specification scope

12.3. Extensions

The Tidal Height Product Specification is extensible. This includes both extensions to the content model and to the encodings supporting the content model. Extensions are optional and not required for a file to be qualified nor do they invalidate a compliant product. Additional layers of information not related to the scope of this product specification should be defined in separate S.100 and S.10x compliant layers.

12.4. Coordinate Reference Systems *Below only covers "coverage", a single "entity" still needs to be covered*

12.4.1. Spatial Representation

All coverages in the Bathymetric Surface Product Specification are georectified, simple uniform quadrilateral grids as defined in IHO S-100 Part 8.

All S-10n Tidal Height product coverages shall be represented with a right-handed Cartesian coordinate system. This system shall have the x-axis oriented towards positive eastings (for projected grids), or east (for geographic grids), and y-axis oriented towards positive northings (for projected grids), or north (for geographic grids). These definitions imply that the z-axis for the sounding data is positive away from the center of mass of the earth (i.e., is positive up), rather than the usual hydrographic convention of positive down (i.e., deeper depths are larger numbers and

negative depths are above datum). User-level code is free to make this reflection if required, but must write the data using the positive-up convention.

In order to make this distinction clear, the term —elevation \parallel is used for the vertical component, rather than —depth \parallel . The uncertainty component shall have the same coordinate system as the elevation component, with the exception that the z-axis is unipolar, and therefore the concept of direction of positive increase is irrelevant. The grid data in a S-10N Tidal Height coverage (either elevation or uncertainty, and any other surfaces that may be added) shall be organized as a uniform quadrilateral grid in row-major order from west to east, and south to north Thus, the first sample of the grid is the node at the southwest corner of the grid with location as specified by the georeferencing parameters, the second is one grid resolution unit to the east and at the same northing or latitude, and the third is two grid resolution units to the east and at the same northing or latitude. For C columns in the grid, the (C+1)th sample in the grid is located one grid resolution unit to the north, but on the same easting, or longitude, as the first sample in the grid.

12.4.2. Coordinate Reference system

12.4.3. Data quality

As defined in IHO S-100 Part 4c the data quality for the elevation coverage is also defined as a co-located coverage, uncertainty. Uncertainty is defined as the vertical uncertainty at each node location. The uncertainty coverage supports multiple definitions of vertical uncertainty.

13. Data Capture

13.1. Description

There area number of methods to observe, analyse and predict tidal heights. It is permitted, but not required to include methodology in the metadata of an *S*-10*n Tidal Height Single Point product. The metadata class S10n_MethodologyMetdata has been defined, but the information elements to populate this metadata class should be identified in a National profile of S10n.*

13.2. Reference to product specification scope

Global.

Note: "Global" means that this scope refers to all parts of this data product specification.

14. Data Maintenance

14.1. Description

14.2. Reference to product specification scope

Global.

Note: "Global" means that this scope refers to all parts of this data product specification.

15. Encoding

15.1. Encoding Principles

The ISO suite of geographic information standards is built on the concept of the separation of the "carrier" from the "content". This is reiterated in S-100 where several encoding approaches are identified. The content is defined in the product specification for any type of data, such as the S-10N Bathymetry Surface Product Specification, in terms of an encoding neutral UML model. Elements from this model are then used to create an Application Schema that is then encoded. Different layers of other auxiliary data may have different encodings. The encoding is described in Annex A is the current implementation. The possibility of using JPEG 2000 + XML is considered as a future longer term option, but is not yet viable until software tools become commonplace. It is possible, but probably not practical to develop a coding using ISO 8211 data descriptive file for information interchange standard. Not only are there no tools available to handle coverage data, but the standard is not widely used for this type of information, so there are not likely to be any such tools available.

ANNEX A: Metadata **Data will be supplied in UTC.**

Name/Role	Source	Multiplicity	Value	Туре	Remarks	Comment [AHO1]: Where I gr
Unique		1		Character/numerical		information to populate table
Identifier						
Unique Name		1		Character string		
Vertical Datum	S101	1	{1} to {30}	S100_VerticalAndSoundingDatum	1. Mean low water springs	
					2. Mean lower low water	
					3. Mean sea level	
					4. Lowest low water	
					5. Mean low water	
					6. Lowest low water	
					7. Approximate mean low v	water springs
					8. Indian spring low water	
					9. Low water springs	
					10. Approximate lowest astr	onomical
					tide	
					11. Nearly lowest low water	
					12. Mean lower low water	
					13. Low water	
					14. Approximate mean low v	water
					15. Approximate mean lowe	r low water
					16. Mena high water	
					17. Mean high water springs	
					18. High water	
					19. Approximate mean sea l	evel
			r -		20. High water springs	
					21. Mean higher high water	
					22. Equinoctial spring low w	vater

					23. Lowest astronomical tid	le	
					24. local datum		
					25. International Great Lake	es Datum	
					1985		
					26. Mean water level		
					27. Lower low water large t	ide	
					28. Higher high water large	tide	
					29. Nearly highest high wat	er	
					30. Highest astronomical tic	le	
					31. HYDROID (New – to cov	er ellipsoidal	
					connection?)	Comment [AHO2]: Do we want to
Issuing	S101			CI_ResponsibleParty	Use S62 – IHO Producers list	suggest a nev	v datum be added?
Authority					Agency responsible for product	ing the data.	
Type of height			1-4		1. Observed		
data					2. Astronomical Prediction	IS	
					3. Numerical Model		
					4. Full Forecast Model		
					5. **Check list with S111 to	use same list*	
Issue Date and	S101	1		Date and time	Date on which the data was ma	de available	
time				Yyyy/mm/dd hh:mm	by the data producer. Mandato	ry for	
					predicted height data.		

Possible consider the following metadata especially for predictions that may be reissued

Name/Role	Source	Multiplicit	Valu	Туре	Remarks	Comment [AHO3]: Where I grab
		у	e			information to populate table
Purpose	S101	1	{1}	characterString	1. New dataset	Comment [AHO4]: May require this
			to	MD_Identification>purpose(character string)	2. New Edition	one for predictions that are reissued.
			{5}		3. Update	
					4. Re-issue	
					5. Cancellation	

Copyright	S101	0*		MD_LegalConstraints -	
				>MD_RestrictionCode <copyright> (ISO19115)</copyright>	
Classificatio	S101	1	{1}	Class	1. unclassified
n			to	MD_SecurityConstraints>MD_ClassificationCode(codel	2. restricted
			{5}	ist)	3. confidential
					4. secret
					5. top secret
Uncertainty				Seconds or fraction of a second or flag value	
of Time					

Annex B DataEntity

Name/Role	Source	Multiplicity	Value	Туре	Remarks	Comment	[AHO5]: Where I grab
Position (x,y)					Latitude and Longitu	de of information	n to populate table
					entity		
Coordinate Reference System datum	S100	1		SC_CoordinateSystem	Coordinate system us	sed for	
					position.		
Height Units					Must be in metres.		
Interval Step / sampling interval							
Date & time							
Water level Height					Observed/ predicted		
Uncertainty of Height							
Water level trend							
methodology				Character string			
				(maximum length?)			

Note S-57 had Feature: T_TIMS – Tide Time Series Attributes

Alphacode	Name	Data type	Definition	Remarks
NOBJNM	Object name in	Text	Name of object in	The attribute "object name in
	national language		national language	national language encodes the
			characters.	individual name of an object in
				the specified national language.
OBJNAM	Object name	Text	The individual name	
			of an object	
STATUS	Status	Enumerations		1. permanent
				2. occasional
				3. recommended
				4. not in use
				5. periodic/intermittent
				6. reserved
				7. temporary
				8. private
				9. mandatory
				10.
				11. extinguished
				12. illuminated
				13. historic
				14. public
				15. synchronized
				16. watched
				17. un-watched
				18. existence doubtful
				19. on request
				20. drop away
				21. rising
				22. increasing
				23. decreasing

				24. strong 25. good 26. moderately 27. poor
TIMEND	Time end	Structure text	The end of an active period	
TIMSTA	Time start	Structured text	The start of an active period	
T_ACWL	Tide – accuracy of water level	Enumeration	Accuracy of the water level to the confidence level of 95%	1 – better than 0.1m and 10 minutes 2 – worse than 0.1m or 10 minutes
T_HWLW	Tide – high and low water values	Structured text	Information on the times and heights of high and low waters for each day of the duration of the time series	
T_TINT	Tide, current – tide interval of values	Integer	The interval between the values in any time series, e.g. tidal, current or other data.	
T_TSVL	Tide – time series values	Structured text	The values of a time series	